Skip to main content

Community Repository Search Results

resource project Public Programs
The "Mentored Youth Building Employable Skills in Technology (MyBEST)" project, a collaboration of the Youth Science Center (YSC) and Learning Technology Center (LTC) at the Science Museum of Minnesota, is a three-year, youth-based proposal that seeks to engage 200 inner-city youngsters in learning experiences involving information and design technologies. The goal of the project is to develop participants' IT fluency coupled with work- and academic-related skills. The program will serve students in grades 7 through 12 with special emphasis on three underrepresented groups: girls, youngsters of color, and the economically disadvantaged. Project participants will receive 130 contact hours and 70% will receive at least 160 hours. Each project year, including summers, students participate in three seasons consisting of five two-week cycles. Project activities will center on an annual technology theme: design, engineering and invention; social and environmental systems; and networks and communication. The activities that constitute project seasons include guest presenter workshops; open labs facilitated by guest presenters, mentors and adult staff; presentations of student projects; career workshops and field trips. The project cycles feature programming (e.g., Logo computer language; Cricketalk), engineering and multi-media production (e.g., digital video; non-linear editing software). Each cycle will interface with an existing museum-related program (e.g., the NSF-funded traveling Cyborg exhibit). Mentors will work alongside participants in all technology-based activities. These mentors will be recruited from university, business, community partners and participant families. Leadership development is addressed through teamwork and in the form of internships and externships. Participants obtain work experience related to technology in the internship and externship component. The "MyBEST" project will serve as a prototype for the Museum to test the introduction of technology as central to the design and learning outcomes of its youth-based programs. An advisory board reflecting expertise in youth development, technology and informal science education will guide the program's development and plans for sustainability. Core elements of the "MyBEST" program will be integrated into the Museum's youth-based projects sponsored by the YSC and LTC departments. The Museum has a strong record of integrating prototype initiatives into long-standing programs.
DATE: -
TEAM MEMBERS: Keith Braafladt Kristen Murray Mary Ann Steiner
resource research Public Programs
Robotic Autonomy is a seven-week, hands-on introduction to robotics designed for high school students. The course presents a broad survey of robotics, beginning with mechanism and electronics and ending with robot behavior, navigation and remote teleoperation. During the summer of 2002, Robotic Autonomy was taught to twenty eight students at Carnegie Mellon West in cooperation with NASA/Ames (Moffett Field, CA). The educational robot and course curriculum were the result of a ground-up design effort chartered to develop an effective and low-cost robot for secondary level education and home use
DATE:
TEAM MEMBERS: Illah Nourbakhsh Kevin Crowley Ajinkya Bhave Emily Hamner Thomas Hsiu Andres Perez-Bergquist Steve Richards Katie Wilkinson
resource research Exhibitions
This paper reports a formative evaluation of an interactive exhibit in the Museum of Science, Boston, that encouraged visitors to create a model using everyday materials. The materials provided for visitors to create their models changed during the period of the evaluation, and visitors were observed and interviewed as they engaged with the various prototypes. Evaluation results show that the type of modeling material presented influenced the visitors' model making process and individual learning and behaviors as well as the interactions visitors had with each other.
DATE:
resource project Public Programs
The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE: -
TEAM MEMBERS: Efi Foufoula-Georgiou Christopher Paola Gary Parker
resource evaluation Media and Technology
Given its ongoing commitment to universal design and the integration of technologies into the museum experience, the Museum of Science decided to employ a handheld Multimedia Tour to accompany Star Wars: Where Science Meets Imagination, an exhibition about the real world meeting Star Wars technologies. With the help of leading tour guide developer, Antenna Audio, a 22-stop tour was produced featuring narration, Behind the Scenes interviews with individuals who had worked on the films, Star Wars film clips, still photos and the ability to send information home. An American Sign Language version
DATE:
TEAM MEMBERS: Elissa Chin Christine Reich Museum of Science
resource project Professional Development, Conferences, and Networks
The Nanoscale Science and Engineering Education (NSEE) Center for Learning and Teaching (NCLT) would focus on the research and development of nano-science instructional resources for grades 7-16, related professional development opportunities for 7-12 teachers, and programs infused with nano-science content for education doctoral students. The Center would bring together educators and scientists from several areas of nano-science and engineering research to collaborate with science teachers and doctoral candidates in education on both the development of the resources and research on their efficacy. The PI has prior experience as director of the Materials World Modules project, an NSF-funded curriculum currently in use in several secondary schools across the country. Lead partners in the proposed Center are Northwestern University, Purdue University, University of Michigan, University of Illinois at Chicago and University of Illinois at Urbana-Champaign. Additional partners include Argonne National Laboratory, West Point Military Academy, Alabama A & M University, Fisk University, Hampton University, Morehouse College and University of Texas at El Paso. The additional partners will widen the geographic range of the project, expanding opportunities to reach a diverse and currently underrepresented population of graduate students, teachers and ultimately students. STEM and Education faculty and researchers from the partner institutions would participate in interdisciplinary teams to address the Center's mission: Provide national education leadership and resources for advancing NSEE Create and implement professional development programs in NSEE Use innovative ideas in learning to design instructional materials for grades 7-16 Conduct research relating to integration of NSEE into science, technology, engineering and mathematics (STEM) education.
DATE: -
TEAM MEMBERS: R. P. H. Chang Thomas Mason Ncholas Giordano Joseph Krajcik
resource project Public Programs
EDC and the Lawrence Hall of Science propose an intensive, innovative mentoring and professional development model that will build the capacity of community-based organizations (CBOs) to deliver high-quality science and engineering curricula to children in after-school programs. The program's goal is to alleviate two consistent problems of after-school STEM providers: high turnover rate and the ability to lead/teach high quality science activities. The project will put in place a broad network of trainers in three regions of the country, leveraging the expertise and collaboration of two well-established and trusted national informal education networks. The extensive collaboration involves 14 organizations total including nine science centers (of varying sizes), three state 4-H agencies, the National 4-H Council and EDC. The primary audience for this project is the trainers (science center, 4-H, others) who currently (or may in the future) train CBO staff. EDC, LHS, and three "mentor" science centers will supervise these trainings and develop the new PD resources designed to improve the quality of training that CBO staff receive from these and other trainers. The National 4-H Council will help coordinate training and dissemination of products through the 4-H national network Goodman Research Group will conduct formative and summative evaluations of the project. DELIVERABLES: This project will deliver: 1) a model of prolonged training and support to build the capacity of CBOs to lead high quality science and engineering curricula with children; 2) a mentoring model to support and supervise trainers who work directly with CBOs; and 3) professional development tools and resources designed to improve the quality of training delivered to CBO staff. STRATEGIC IMPACT: This project will impact the national after-school professional development field by (a) demonstrating a model for how science-center, 4-H, and other trainers can build the capacity of CBOs to improve the way they lead science and engineering projects with children, (b) nurturing a cadre of mentor institutions to assist others to adopt this capacity-building and professional-development model, and (c) developing professional development tools and resources that improve the quality of training delivered by trainers to CBO staff. COLLABORATIVE PARTNERS: The three "mentor" institutions are: (1) the Lawrence Hall of Science, (2) the Science Museum of Minnesota, and (3) the Boston Children's Museum. The six science centers include (1) COSI Toledo in Toledo, OH; (2) Headwaters Science Center in Bemidji, MN; (3) Providence Children's Museum in Providence, RI; (4) Rochester Museum and Science Center in Rochester, NY; (5) River Legacy Living Science Center in Arlington, TX; and (6) Explora in Albuquerque, NM. The three 4-H partners include (1) 4-H New Hampshire, (2) 4- H Minnesota, and (3) 4-H California.
DATE: -
TEAM MEMBERS: Charles Hutchison Bernard Zubrowski Charles Hutchison
resource project Exhibitions
Over a three year period, the Museum of Science, Boston will develop a national traveling exhibition and associated programs that will support the goals and standards for technological literacy that were recently articulated in reports by the National Academy of Engineering and the International Technology Education Association. Intellectual Merit. The exhibit will take advantage of the widely known characters and images of future technology from the Star Wars movies to attract visitors and to engage them in learning about potential technologies that may impact our lives. It incorporates new and adapted interactive devices that will involve visitors in inquiry-based learning about technologies related to frictionless land vehicles, robotic mobility mechanisms, and habitats for living underwater and in space. Broader Impact. The exhibition will reach a large national audience by traveling to the members of the Science Museum Exhibit Collaborative as well as other institutions. Use of popular culture, science fiction and futuristic technology will help attract those who may not be traditional science center visitors. Educational impact will be extended through programming for the public and school groups, including materials for institutions that do not host the exhibition, along with a website.
DATE: -
resource project Public Programs
Chabot Space and Science Center seeks support to engage in a six-month planning process for "Imagine That!," a multi-faceted science and technology career exploration program. In partnership with the Columbia River Exhibition of History, Science & Technology (CREHST) and the American Museum of Science & Energy (AMSE), Chabot proposes to fill the gap between well-intentioned and designed programs and the programs' abilities to really influence/affect future career choices by participants. "Imagine That!" will familiarize youth with a wide range of careers in scientific and technical fields through after-school and summer programs that offer in-depth career exploration and guidance activities, hands-on experiences that complement science education in school and an introduction to role models. "Imagine That!" will also provide parents with resources to support their children as they explore potential careers in science, technology and engineering. This planning grant will enable the three major science museums, Junior Achievement and government and business partners to develop the logistics for working together on an ambitious collaborative program of national scope. "Imagine That!" has the potential for broad and significant impact. Not only would it create a national program of career exploration, it will strengthen and diversify the STEM workforce. The national impact of this project is assured by the inclusion of geographically diverse partners, regional advisory councils and a robust dissemination plan.
DATE: -
TEAM MEMBERS: Etta Heber Linda Kekelis
resource project Public Programs
The St. Louis Science Center, in collaboration with the City College of New York and the Science Museum of Minnesota, will combine their considerable expertise with youth programs to create new opportunities for after-school STEM learning. Teens, ages 14-17, currently participating in the "Youth Exploring Science" program at the St. Louis Science Center and the Youth Science Center at the Science Museum of Minnesota will receive intensive training to prepare them to assume the role of lead designers of Learning Places that will be created in nine-after school programs in St. Louis and St. Paul. "Learning Places" are educational environments supported by hands-on activities and innovative strategies that integrate science, mathematics and technology into after-school programs. In the final year of the grant the project will be disseminated to five museums across the US including the Pacific Science Center (Seattle, WA), Headwaters Science Center (Bemidji, MN), Explora (Albuquerque, NM), and Sciencenter (Ithica, NY). Youth program staff, and staff and administrators in after-school programs and partnering museums will also benefit from training and professional development. Deliverables include 27 "Learning Places," a teen training program, a Resource Guide for implementation and research contributions to the field.
DATE: -
TEAM MEMBERS: Diane Miller Gary Benenson Holly Hughes Mary Ann Steiner Theresa Stets Christine (Kit) Klein
resource project Exhibitions
The Liberty Science Center, located across the Hudson River from the former World Trade Center, will develop, evaluate and install an 8,000 square foot, five-story permanent exhibition about the architectural design and engineering, physics, and urban-related environmental science of skyscrapers. The exhibit will use a vertical space that includes a view overlooking southern Manhatten, the former World Trade Center, and one of the most famous urban skylines in the world. The exhibition is organized around three basic theme areas and is balanced between the advantages and disadvantages of skyscrapers. Visitors enter the exhibit through SKYSCRAPER WORLD, an advance organizer that sets the stage for the exhibit and identifies possible wayfinding pathways through other areas. BUILDING THE BUILDING (second and third levels) addresses principles in the design and construction of skyscrapers, while HABITAT AND IMPACT (fourth level) describes patterns of adaptation in the ecosystems created by skyscrapers. An outdoor observation deck (fifth level) facing the Manhattan skyline and the former World Trade Center, provides the opportunity for skyline programming. What is a Rooftop, Rooftop Garden, and Skyline Clock, assisted by binocular telescopes for observing detail, are interactive programs that use the skyline as a teaching tool. Taking advantage of the dramatic skyline seen from the Science Center, the project will document changing public attitudes about skyscrapers and analyze patterns of visitor traffic and wayfinding in a five-story exhibition tower. The exhibit is supported by mediated public programs in LSC and by experiences for school audiences, both at LSC and in local schools. Although "Skyscraper" is primarily an informal learning experience, it has significant linkages to formal in-school programs.
DATE: -
TEAM MEMBERS: Wayne LaBar
resource project Media and Technology
Thinking SMART is a comprehensive five-year program that will encourage young women to pursue careers in science, mathematics and technology. The project focuses on girls ages 12-18, and will especially target those who are underserved and underrepresented in the sciences, including girls from diverse backgrounds and persons with disabilities. Key elements include four science/engineering module options, a two-tiered mentoring component, training, resource materials, online activities and an awards program. The modules (Material Girls, Eco Girls, Galactic Girls, Net Girls), focus on engineering, ecology, physics and computer science respectively, and will be aligned with national standards. The modules are implemented during the school year and include weekly programming, a summer camp and a spring "Women in Science and Engineering" conference organized by girls. Weekly meetings are augmented by online activities, in which girls interact with other participants and mentors, publish reports and obtain career information. Additionally, participants who complete all four modules are eligible to become paid mentors for younger participants. Five publications will be produced to support the program, including manuals for mentors (both adults and youth), module activities, a parent guide and a guide for implementation sites on community partnerships. Thinking SMART materials will be developed and piloted tested at eight sites in conjunction with Girls, Inc. affiliates in Nashua, NH, Worcester, MA, Oakridge, TN and Shelbyville, IN, with input from the Society of Women Engineers. Extensive training will also be provided for pilot programs and future dissemination. Finally the E3 Awards Program will motivate implementation sites to create high quality local programs. It is anticipated that more than 1,500 Girls, Inc. affiliates will adopt "Thinking SMART."
DATE: -
TEAM MEMBERS: Brenda Stegall Janet Stanton Heather Johnston Nicholson Shalonda Murray Joe Martinez