Skip to main content

Community Repository Search Results

resource project
iPlan: A Flexible Platform for Exploring Complex Land-Use Issues in Local Contexts
DATE: -
TEAM MEMBERS:
resource project Public Programs
The Da Vinci Science Center will expand its Women in Science and Engineering Network by partnering with community organizations, colleges, and universities to enhance the STEM learning and support ecosystem for women and girls in the Lehigh Valley and surrounding communities in eastern Pennsylvania. The museum will assess the needs of K-12 girls, undergraduate women, and women in STEM employment, and map opportunities for cross-sector collaborations to support them. The project team will identify marketing and recruitment messages that encourage STEM-interested girls and women to participate in programs and follow developmental pathways within a STEM learning ecosystem. Based on identified needs and messages, the museum will pilot and evaluate new STEM programs for girls and women, and train educators and mentors to sustain this work.
DATE: -
TEAM MEMBERS: Karen Knecht
resource project Public Programs
This is an NSF Postdoctoral Research Fellowship in Biology, under the program Broadening Participation of Groups Under-represented in Biology. The fellow, Robert Habig, is conducting research and receiving training that is increasing the participation of groups underrepresented in biology. The fellow is being mentored by David Lahti at Queens College, City University of New York. The goal of the fellow's project is to perform a comparative evolutionary analysis of nest construction in the weaverbirds (Ploceus spp.). The evolutionary history of behavior can be nearly intractable and resistant to quantitative analysis. One strategy for illuminating our understanding of behavioral evolution is to conduct comparative studies of animal architectures, such as nests. Unlike behaviors themselves, nests persist through time, and have structures that can be disassociated into several quantitative features, which permits easy and comparable measurements and allows scientists to address questions about evolutionary history and functional relevance. The fellow's research addresses two major questions: (1) How do patterns of nest construction vary within and between species? (2) How do interrelated evolutionary processes shape variation in nest structure? This project is important for advancing foundational scientific knowledge, and will be the first study of weavers incorporating both molecular data and nest morphology to better understand the evolutionary underpinnings of a complex behavioral process. The fellow is also broadening participation in science by mentoring students underrepresented in biology.

The Fellow will reconstruct the evolution of nest construction in Ploceus weaverbirds incorporating advanced phylogenetic and morphological techniques including bioinformatics, computer modeling, X-ray computed tomography, and image processing. The Fellow will also conduct fieldwork in two hotspots of weaverbird diversity, the Awash Valley in Ethiopia and the Limpopo Province of South Africa, and collect behavioral data (e.g. rates of predation and brood parasitism; mating and parental behavior) and morphological data (e.g. nest structure) to test hypotheses of how distinct types of evolutionary selection shape the evolution of nest construction. The proposed comparative study can thus address questions such as how rapidly certain nest structural features evolve, which features are ancestral versus derived, which tend to exhibit phylogenetic signal, and which evolve in response to environmental features. The Fellow is receiving training in three-dimensional morphological analyses, phylogenetic tree construction, bioinformatics, computer modeling, and mentoring skills. The plan to broaden participation includes (1) recruitment, training, and mentoring of Queens College students from underrepresented groups in biology; (2) designing an evolutionary biology curriculum that ties in the research of the fellowship; (3) teaching an evolutionary biology class to underrepresented middle and high school students at the American Museum of Natural History; and (4) facilitating a research team for middle school and high school students.
DATE: -
TEAM MEMBERS: Bobby Habig
resource research Public Programs
WCS Education is committed to creating a diverse and inclusive movement of conservation advocates. We do this by creating equitable pathways to increased scientific literacy, engagement in conservation advocacy, and lasting connection with animals and nature. One of the programs that incorporates all of these strategies is Project TRUE (Teens Researching Urban Ecology). Project TRUE is a partnership between WCS and Fordham University that is both a social science research study and a youth development program designed to support youth in STEM career pathways. Teams of high school students
DATE:
TEAM MEMBERS: Su-Jen Roberts
resource research Public Programs
The field of ecology is poised to substantially contribute to the creation of a socially and environmentally equitable urban future. To realize this contribution, the field of ecology must create strategies that ensure inclusion of underrepresented minorities so that a broad array of experiences and ideas collectively address challenges inherent to a sustainable urban future. Despite efforts to recruit and retain underrepresented racial minorities (URM) in the sciences, graduation rates have only slightly increased over the last several decades. While research mentoring programs at the
DATE:
TEAM MEMBERS: Jason Aloisio Brian Johnson James D. Lewis J. Alan Clark Jason Munshi-South Su-Jen Roberts Deborah Wasserman Joe E Heimlich Karen Tingley
resource research Media and Technology
The aim of this paper is to analyze the impact of Comics & Science workshops where forty-one teenagers (designated Trainee Science Comic Authors [TSCAs]) are asked to create a one-page comic strip based on a scientific presentation given by a PhD student. Instrumental genesis is chosen as the conceptual framework to characterize the interplay between the specific characteristics of a comic and the pieces of scientific knowledge to be translated. Six workshops were conducted and analyzed. The results show that the TSCAs followed the codes that are specific to the comic strip medium and took
DATE:
TEAM MEMBERS: Cecile de Hosson Laurence Bordenave Pierre-Laurent Daures Nicolas Decamp Christophe Hache Julie Horoks Nassima Guediri Eirini Matalliotaki
resource project Public Programs
One way to motivate young people from diverse backgrounds to pursue engineering careers is to enlist them as educators who can help the general public understand how engineers help respond to the challenges of everyday life. The New York Hall of Science, which serves a large and diverse audience, is an ideal setting for testing the promise of this strategy. Youth educators and curators of public programs at the Hall of Science will mentor two groups of high school- and early college-aged youth, who will contribute to the design and facilitation of engineering-focused events and activities for museum visitors. They will work together to develop engineering programming for the public that emphasizes the cultural and interpersonal dimensions of engineering practices. This group of young people will be recruited from the Hall of Science's more than 100 Explainers, a very diverse group of young people who work part-time at the Hall of Science and engage with visitors as they explore the museum. Researchers will track participants' experiences and document their impact on museum visitors' perceptions of engineering. The expectation is that creating and delivering these experiences for visitors will have a positive impact on the youth participants' understanding of the engineering disciplines, and on visitors' perceptions of engineering and its relationship to everyday life.

The project will use observations, interviews, journaling, and the Engineering Professional Skills Assessment to explore youth experience, and visitor exit surveys and interviews to probe visitor perceptions. Both the skills assessment and visitor surveys are NSF-funded instruments. Data coding will be grounded in the engineering habits of mind defined by the National Research Council's Committee on Understanding and Improving K-12 Engineering Education in the United States (2009). The project will capture evidence regarding which habits of mind the Fellows are most frequently engaged with. The effort will also explore how interactions with peers (as colleagues), with experts (as learners, such as with Designers in Residence) and with visitors (as teachers and leaders) may be associated with different combinations of the habits of mind over the course of the project. Visitor data and assessment data will allow the project to begin to make analytic connections between participating young people's increased understanding of culturally-situated engineering challenges, and their impact on the experiences of museum visitors who engage with engineering programming at the Hall of Science.
DATE: -
TEAM MEMBERS: Katherine McMillan Priya Mohabir ChangChia James Liu
resource project Public Programs
The purpose of the proposed project, Community of Bilingual English-Spanish Speakers Exploring Issues in Science and Health (CBESS), is to increase linguistic diversity in science, technology, engineering, and math (STEM)-healthcare fields, including biomedical, behavioral, and clinical research careers. With support of the large group of Spanish-English bilingual (SEB), STEM-healthcare professionals that was formed during this proposal preparation, CBESS will contribute to the pipeline between K–12 and higher education/career.

CBESS will recruit Spanish-English bilingual (SEB) high-school students at the end of tenth grade and implement several language-supported STEM-healthcare interventions during the eleventh and twelfth grade (17 months): family-engaged career exploration; Next Generation Science Standards (NGSS)-aligned, inquiry-based, youth-led summer research residential program; community outreach/dissemination, internships, and mentoring.

Applying methods that are known to be effective with the target population, CBESS will also train undergraduate, near-peer instructor-mentors—STEM-healthcare Leadership Trainees (LT)—in inquiry-based instruction and strategies for positioning K–12 bilingual students as “insiders” in STEM-healthcare, as well as in the responsible conduct of research and mentoring skills, followed by practical application with SR.

CBESS will develop and expand the nascent SEB STEM-healthcare community of practice (CoP) that was created during CBESS proposal preparation. Committed academic, clinical, research, and community partners will contribute to research and evaluation efforts, and support the pipeline between K–12 and higher education/career through Community Based Participatory Research (CBPR), framing priority community health issues to be addressed by each cohort of SR from among issues identified by the SR during the application process. Finally, the CoP will target long-term institutional sustainability for linguistically diverse students in STEM-healthcare education and careers.
DATE: -
TEAM MEMBERS: Ruben Dagda Jacque Ewing-Taylor Jenica Finnegan
resource project Public Programs
Citizen science is a form of Public Participation in Scientific Research (PPSR) in which the participants are engaged in the scientific process to support research that results in scientifically valid data. Opportunities for participation in real and authentic scientific research have never been larger or broader than they are today. The growing popularity and refinement of PPSR efforts (such as birding and species counting studies orchestrated by the Cornell Lab of Ornithology) have created both an opportunity for science engagement and a need for more research to better implement such projects in order to maximize both benefits to and contributions from the public.

Towards this end, Shirk et al. have posted a design framework for PPSR projects that delineates distinct levels of citizen scientist participation; from the least to the highest level of participation, these categories are contract, contribute, collaborate, co-create, and colleagues. The distinctions among these levels are important to practitioners seeking to design effective citizen science programs as each increase in citizen science participation in the scientific process is hypothesized to have both benefits and obstacles. The literature on citizen science models of PPSR calls for more research on the role that this degree of participation plays in the quality of that participation and related learning outcomes (e.g., Shirk et al., 2012; Bonney et al., 2009). With an unprecedented interest in thoughtfully incorporating citizen science into health-based studies, citizen science practitioners and health researchers first need a better understanding of the role of culture in how different communities approach and perceive participation in health-related studies, the true impact of intended educational efforts from participation, and the role participation in general has on the scientific process and the science outcome.

Project goal to address critical barrier in the field: Establish best practices for use of citizen science in the content area of human health-based research, and better inform the design of future projects in PPSR, both in the Denver Museum of Nature & Science’s Genetics of Taste Lab (Lab), and importantly, in various research and educational settings across the field.

Aims


Understand who currently engages in citizen science projects in order to design strategies to overcome the barriers to participation that occur at each level of the PPSR framework, particularly among audiences underrepresented in STEM.
Significantly advance the current knowledge regarding how citizen scientists engage in, and learn from, and participate in the different levels of the PPSR framework.
Determine the impact that each stage of citizen science participation has on the scientific process.
DATE: -
TEAM MEMBERS: Nichole Garneau Tiffany Nuessle
resource project Public Programs
This project specifically addresses the SMRB’s imperative that “NIH’s pre-college STEM activities need a rejuvenated integrated focus on biomedical workforce preparedness with special considerations for under-represented minorities.”

Approximately one-third of CityLab’s participants are under-represented minority (URM) students, but we now have a unique opportunity to build a program that will reach many URM students and position them for undergraduate STEM success. We have partnered with urban squash education organizations in Boston (SquashBusters) and New York (CitySquash and StreetSquash) that recruit URM/low SES students to participate in after-school squash training and academic enrichment programs. We have also partnered with the Squash + Education Alliance (previously named the National Urban Squash and Education Association) to disseminate the new program—first from Boston to New York and later through its national network of affiliated squash education programs.

In order to bring this project to fruition, Boston University is joining forces with Fordham University in New York. Fordham is home to CitySquash so these organizations provide an ideal base for the New York activities. The proposed project will enable us to demonstrate feasibility and replicability within the 5-year scope of this grant. Our shared vision is to develop a national model for informal precollege biomedical science education that can be infused into a myriad of similar athletic/academic enrichment programs.

The squash education movement for urban youth has been highly successful in enrolling program graduates in college. Since the academic offerings of the squash education programs focus on English Language Arts and Mathematics, their students struggle with science and rarely recognize the tremendous opportunities for long- term employment in STEM fields.

This project will bring CityLab’s resources to local squash programs in a coordinated and sustained engagement to introduce students to STEM, specifically the biomedical sciences. Together with the urban squash centers, we will build upon the hands-on life science experiences developed and widely disseminated by CityLab to create engaging laboratory-based experiences involving athletics and physiology.

The specific aims of the proposed project are:


To develop, implement, and evaluate a new partnership model for recruiting URM/low SES students and inspiring them to pursue careers in STEM; and
To examine changes in the science learner identities (SLI) of the students who participate in this program and establish this metric as a marker for continued engagement in STEM.


With the involvement of the two urban research universities, three local squash education programs, and SEA, we see this new SEPA initiative as a unique way to pilot, refine, and disseminate an after-school/informal science education program that can have a significant impact on the nation’s production of talented STEM graduates from URM/low SES backgrounds.
DATE: -
TEAM MEMBERS: Carl Franzblau Donald DeRosa Carla Romney
resource research Public Programs
The goal of our research is to identify strengths and weaknesses of high school level science fair and improvements that might enhance learning outcomes based on empirical assessment of student experiences. We use the web-based data collection program REDCap to implement anonymous and voluntary surveys about science fair experiences with two independent groups -- high school students who recently competed in the Dallas Regional Science and Engineering Fair and post high school students (undergraduates, 1st year medical students, and 1st year biomedical graduate students) on STEM education
DATE:
TEAM MEMBERS: Frederick Grinnell Simon Dalley Karen Shepherd Joan Reisch
resource evaluation Public Programs
The National Federation of the Blind (NFB), in partnership with scholars from Utah State University and educators from the Science Museum of Minnesota (SMM), has developed the Spatial Ability and Blind Engineering Research (SABER) project to assess and improve the spatial ability of blind teens in order to broaden the participation of blind students in STEM fields. Activities began this summer (2018) with a week-long, residential engineering design program for thirty blind high school students at NFB headquarters in Baltimore. The evaluation focused on perceptions of process and measures of
DATE: