Skip to main content

Community Repository Search Results

resource project Exhibitions
History Colorado (HC) conducted an NSF AISL Innovations in Development project known as Ute STEM.
DATE: -
TEAM MEMBERS: Elizabeth Cook Sheila Goff Shannon Voirol JJ Rutherford
resource project Exhibitions
This project is designed to support collaboration between informal STEM learning (ISL) researchers, designers, and educators with sound researchers and acoustic ecologists to jointly explore the role of auditory experiences—soundscapes—on learning. In informal STEM learning spaces, where conversation advances STEM learning and is a vital part of the experience of exploring STEM phenomena with family and friends, attention to the impacts of soundscapes can have an important bearing on learning. Understanding how soundscapes may facilitate, spark, distract from, or even overwhelm thinking and conversation will provide ISL educators and designers evidence to inform their practice. The project is structured to reflect the complexity of ISL audiences and experiences; thus, partners include the North Park Village Nature Center located in in a diverse immigrant neighborhood in Chicago; Wild Indigo, a Great Lakes Audubon program primarily serving African American visitors in Midwest cities; an after-school/summer camp provider, STEAMing Ahead New Mexico, serving families in the rural southwest corner of New Mexico, and four sites in Ohio, MetroParks, Columbus Zoo and Aquarium, Franklin Park Conservatory and Botanical Gardens, and the Center of Science and Industry.

Investigators will conduct large-scale exploratory research to answer an understudied research question: How do environmental sounds impact STEM learning in informal learning spaces?  Researchers and practitioners will characterize and describe the soundscapes throughout the different outdoor and indoor exhibit/learning spaces. Researchers will observe 800 visitors, tracking attraction, attention, dwell time, and shared learning. In addition to observations, researchers will join another 150 visitors for think-aloud interviews, where researchers will walk alongside visitors and capture pertinent notes while visitors describe their experience in real time. Correlational and cluster analyses using machine learning algorithms will be used to identify patterns across different sounds, soundscapes, responses, and reflections of research participants. In particular, the analyses will identify characteristics of sounds that correlate with increased attention and shared learning. Throughout the project, a team of evaluators will monitor progress and support continuous improvement, including guidance for developing culturally responsive research metrics co-defined with project partners. Evaluators will also document the extent to which the project impacts capacity building, and influences planning and design considerations for project partners. This exploratory study is the initial in a larger research agenda, laying the groundwork for future experimental study designs that test causal claims about the relationships between specific soundscapes and visitor learning. Results of this study will be disseminated widely to informal learning researchers and practitioners through workshops, presentations, journal articles, facilitated conversations, and a short film that aligns with the focus and findings of the research.
DATE: -
TEAM MEMBERS: Martha Merson Justin Meyer Daniel Shanahan
resource project Public Programs
This Innovations in Development project supports racially and ethnically diverse youth in learning about climate resilience in informal settings, including community centers, afterschool programs, and museums. The project aims to: (1) build the capacity of community organizations to implement youth programming on climate resilience; (2) increase youth knowledge, skills, and self-efficacy associated with climate resilience (also referred to as environmental health literacy for climate resilience); and (3) explore how collaborating research universities and community organizations engage diverse youth in informal STEM learning. Project partners include the UNC Institute for the Environment, the University of Washington-Interdisciplinary Center for Exposures, Diseases, Genomics and Environment, the North Carolina Museum of Natural Sciences, Juntos NC, and the Duwamish River Community Coalition (DRCC). Juntos NC and DRCC actively engage Latino and Indigenous youth in their programming and seek to implement resilience-focused programming that supports youth science learning and leadership development.

Together, informal educators and participating youth will develop locally relevant solutions to climate impacts in their communities. Youth will interact with university-based climate scientists and educators to collect and analyze data and will participate in resilience-focused dialogue, planning, and actions in their communities. Youth will share what they learn with their families and peers through family events and teen summits. The project will engage dozens of educators in community organizations and at least 250 youth, who will share what they learn with their families and communities, reaching hundreds more people through communications and local action projects. Mixed-methods assessment will provide insight into the extent participating youth (a) develop environmental health literacy for climate resilience, and (b) take action to address resilience in their home communities. The team will assess how these outcomes vary by location, and the implications of any variation on potential for project replication. A participatory evaluation, led by an external evaluator, will provide insight into empowerment outcomes. Findings will be disseminated to professional audiences at local and national conferences; and curricular materials from this project will be disseminated through the project website.
DATE: -
TEAM MEMBERS: Kathleen Gray Sarah Yelton
resource project Exhibitions
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

Zoos and aquariums have been offering programming, events, and visit accommodations to autistic individuals for several years. While these efforts can provide great experiences, they are focused more on accommodation and the outward-facing guest experience than inclusion. Lack of inclusion features in design, programming, and representation amongst zoo and aquarium representatives, ultimately limits full inclusion and adds to a sense in autistic individuals of not belonging and not being welcomed. To develop a fully inclusive experience for autistic individuals, this project will develop an evidence-based framework of inclusive practices for zoos and aquariums and build a community of practice around inclusion broadly. The project brings together researchers from Oregon State University, Vanderbilt Kennedy Center’s Treatment and Research Institute for Autism Spectrum Disorders, and the Association of Zoos and Aquariums. Researchers will create and investigate the extent and ways in which a research-informed framework and associated tools (i.e. case studies, discussion guides, self-guided audits, etc.) and strategies support science learning for autistic individuals, and help practitioners expand access and inclusion of autistic audiences beyond special events or the general visit experience by applying inclusive practices for programs, exhibit development, internships, volunteer opportunities, and employment. To maximize impact, the project will develop and expand a network of early adopters to build a community of practice around inclusive practices to develop fully inclusive zoo and aquarium experiences for all individuals.

The project will investigate 4 research questions: (1) In what ways and to what extent are zoos and aquariums currently addressing access and inclusion for autistic individuals? (2) How do staff in zoos and aquariums perceive their and their institution’s willingness and ability to address access and inclusion for autistic individuals? (3) What is a framework of evidence-based practices across the zoo and aquarium experience that is inclusive for autistic individuals, and what associated tools and strategies are needed to make the framework useful for early adopters? And (4) to what extent and in what ways does a research informed framework with associated tools and strategies engage, support, and enhance an existing community of practitioners already dedicated to addressing autistic audiences and promote inclusive practices at zoos and aquariums for autistic people? The project is designed as two phases: (1) the research and development of a framework of inclusive practices and tools for supporting autistic individuals and (2) expanding a network of early adopters to build a community of practice around inclusive practices and an overall strategy of implementation. The framework will be informed through a state of the field study across the zoo/aquarium field that includes a landscape study and needs assessment as well as a review of literature that synthesizes existing research across disciplines for developing inclusive practices for autistic individuals in zoos and aquariums. The team will also conduct online surveys and focus groups to gather input from various stakeholders including zoo and aquarium employees and practitioners, autistic individuals, and their social groups (e.g., family members, peers, advocacy organizations). The second phase of the study will focus on sharing the framework and tools with practitioners across the zoo/aquarium field for feedback and reflection to develop an overall strategy for broader implementation and expanding the existing network of zoo and aquarium professionals to build a community of practice dedicated to the comprehensive inclusion of autistic individuals across the full zoo and aquarium experience. The results will be disseminated through conference presentations, scholarly publications, online discussion forums, and collaborative partners’ websites. The project represents one of the first of its kind on autistic audiences within the zoo and aquarium context and is the first to look at the full experience of autistic patrons to zoos and aquariums across programs/events, exhibits, volunteering, internship, and employment opportunities. A process evaluation conducted as part of the project will explore how the approach taken in this project may be more broadly applied in understanding and advancing inclusion for other audiences historically underserved or marginalized by zoos and aquariums.

This Research in Service to Practice project is supported by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Kelly Riedinger Lauren Weaver Amy Rutherford
resource project Exhibitions
Recent studies have advocated for a shift toward educational practices that involve learners in actively contributing to science, technology, engineering, and mathematics (STEM) as a shared and public endeavor, rather than limiting their involvement to the construction of previously established knowledge. Prioritizing learners’ agency in deciding what is worth knowing and how learning takes place may create more equitable and inclusive learning experiences by centering the knowledge, cultural practices, and social interactions that motivate learning for people across ages, genders, and backgrounds. In informal learning environments, families’ social interactions are critical avenues for STEM learning, and science centers and museums have developed strategies for prompting families’ sustained engagement and conversation at STEM exhibits. However, exhibits often guide visitors’ exploration toward predetermined insights, constraining the ways that families can interact with STEM content, and neglecting opportunities to tap into their prior knowledge. Practices in the maker movement that emphasize skill-building and creative expression, and participatory practices in museums that invite visitors to contribute to exhibits in consequential ways both have the potential to reframe STEM learning as an ongoing, social process that welcomes diverse perspectives. Yet little is known about how these practices can be scaled, and how families themselves respond to these efforts, particularly for the diverse family audiences that science centers and museums aim to serve. Further, although gender and ethnicity both affect learning in informal settings, studies often separate participants along a single dimension, obscuring important nuances in families’ experiences. By addressing these outstanding questions, this research responds to the goals of the Advancing Informal STEM Learning (AISL) program, which seeks to advance evidence-based understanding of the design and development of STEM learning opportunities for the public in informal environments. This includes providing multiple pathways for broadening engagement in STEM learning experiences and advancing innovative research on STEM learning in informal environments.

Research will address (1) how families perceive and act on their collective epistemic agency while exploring STEM exhibits (i.e., how they work together to negotiate and pursue their own learning goals); (2) whether and how families’ expressions of agency are influenced by gender and ethnicity; and (3) what exhibit design features support expressions of agency for the broadest possible audience. Research studies will use interviews and observational case studies at a range of exhibits with distinct affordances to examine families’ epistemic agency as a shared, social practice. Cultural historical activity theory and intersectional approaches will guide qualitative analyses of families’ activities as systems that are mediated by the physical environment and social setting. Education activities will involve an ongoing collaboration between researchers, exhibit designers, educators, and facilitators (high-school and college-level floor staff), using a Change Laboratory model. The group will use emerging findings from the research to create a reflection tool to guide the development of more inclusive learning experiences at STEM exhibits, and a set of design principles for supporting families’ expressions of agency. A longitudinal ethnographic study will document the development of inclusive exhibit design practices throughout the project as well as how the Change Lab participants develop their sociocultural perspectives on learning and exhibit design over time. Analyzing these shifts in practice within the Change Lab will provide a deeper understanding of what works and what is difficult or does not occur when working toward infrastructure change in museums. By considering how multiple aspects of families’ identities shape their learning experiences, this work will generate evidence-based recommendations to help science centers and museums develop more inclusive practices that foster a sense of ownership over the learning process for the broadest possible audience of families.
DATE: -
TEAM MEMBERS: Susan Letourneau
resource project Public Programs
While museums strive to be as inclusive and welcoming as possible to all visitors, data from many institutions shows that audiences are still disproportionately white, well-educated, and more affluent than the average local population. One contributing factor to the lack of progress is that staff often create programs that work to create inclusivity from their own perspective, rather than grounding the work in a broader vision of the museum experience. This project will allow for a deeper exploration of how visitors, particularly those from groups that visit less frequently, experience a museum visit, and how their sense of belonging is supported or eroded during their visit. The team believes this sense is built up or taken away through specific moments of engagement or alienation and will explore these moments that matter through the work. Through intensive work at one museum, and additional work at three other museums, the project will look for themes and insights that can help all museums to create more positive moments that matter for all audiences. Specifically, the project will result in a) insights for museums in supporting a visitor-based sense of belonging, b) shared methods for working with visitors that could be applied by other researchers to explore specifics in a particular setting, and c) grounding work to develop survey questions for use across the field. This award is funded by the Advanced Informal STEM Learning program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

Building on existing work around exclusion and inclusion in everyday science learning, this project aims to formally define what a sense of belonging means in the science and natural history museum context as a construct for understanding inclusivity. The research team hypothesizes that the majority of experiences in an entire museum visit have a relatively neutral effect on visitor sense of belonging; however, at times, visitors may experience positive or negative moments, and these moments that matter may influence a visitor's STEM engagement, interest, and/or identity. This exploratory work will help to develop and ground the construct of sense of belonging within the museum visitor's experiences, to identify visitor moments that matter using an equity approach that intentionally centers the experiences of visitors from underrepresented groups, and to form the basis for future research that would support the development of a fieldwide measure of sense of belonging. The research study will focus on defining the construct of sense of belonging so it 1) aligns with the research literature and 2) is grounded in the experiences of science/natural history museum visitors. Photovoice data collection method and interviews will be used with visitors ages six and above to identify moments that matter for them during a visit to a science/natural history museum. This project will create new understanding of this construct for not only science/natural history museums and the larger informal science education (ISE) field, but fill a gap in the overall literature around the construct of sense of belonging. The project will also provide new learnings for the ISE field on how to adapt and use the photovoice method to study complex constructs, such as sense of belonging, in science/natural history museums.

This Pilots and Feasibility Studies award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Professional Development, Conferences, and Networks
The impacts of changes in the climate at local and global levels threaten how people live. Some frontline communities, especially in historically disenfranchised and under-resourced areas, are particularly vulnerable to the devastating effects of climatological events such as wildfires, flooding, and urban heat islands. As such, there is an urgent need for collective, evidence-based understanding and engagement to prevent and prepare for these potentially fatal events. Led by the Oregon Museum of Science and Industry (OMSI) in Portland, Oregon, in collaboration with local and national partners, Youth Lead the Way is an early-stage Innovations in Development project that offers a theory-based approach for youth in climatologically vulnerable communities to work in climate science research alongside field researchers, develop leadership skills, and engage in timely conversations that impact their own communities. The project will develop and evaluate a Youth Advisory Research Board model to equip and support youth and informal STEM education institutions to conduct evidence-based research on local climate impacts and communicate the findings of their research to their communities. Youth Lead the Way advances the work of several previous NSF-funded projects on climate education, youth advisory boards, and collaborative networks to engage the public in informal STEM learning. Findings from this project will support ongoing efforts in the informal STEM education field to meaningfully engage youth and to more effectively communicate science related to climate and its impacts to the public.

During this initial two-year early-stage project, youth predominantly from racial and ethnic groups underrepresented in STEM will engage in a year-long extended STEM experience. These youth will work collaboratively with scientists and museum professionals to enhance their skills as climate researchers, science communicators, and educational leaders, while reaching an estimated 4,000 or more public audience members through research and events at OMSI, in their schools, and in their communities. Using a cohort model, the youth will conduct scientifically based research studies on various local climate impact topics while concurrently serving in an advisory role at the Oregon Museum of Science and Industry, where they will participate in shaping relevant museum programs and practices. The youth will also develop and present climate stories, a communication approach based on storytelling, to raise public understanding and awareness about local climatological changes and impacts. In addition to the youth component, a companion workshop will be held at the Sciencenter in Ithaca, New York, a partner organization, to train staff and formatively assess the feasibility of scaling the model in other museums. At the program level, an exploratory qualitative research study will be conducted to identify the factors of the overall model that contribute to desired outcomes of youth engagement, climate impact education, and informal science education professional development. Interviews, surveys, focus groups, group chats among youth cohort members, and reviews of artifacts generated by the youth will inform this exploratory study. A theory-based guide outlining key findings, considerations, and recommendations will also be produced. The dissemination of this work will be multi-tiered, reaching thousands within the target communities through public programs, professional networks, at conferences, and a live virtual professional development event hosted by the Association for Science-Technology Centers. If successful, Youth Lead the Way will lay the groundwork for a model that promotes youth and public engagement in STEM through climate science research and identifies promising pathways for future research and similar efforts well beyond this project.

This early-stage Innovations in Development project is funded by the NSF Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Scott Randol Christopher Cardiel Rebecca Reilly Jennifer Schwade Imme Huttmann Carla Herran Marcie Benne Todd Shagott Maria Zybina
resource project Public Programs
This three-year research and implementation project empowers middle school LatinX youth to employ their own assets and funds of knowledge to solve community problems through engineering. Only 7% of adults in the STEM job cluster are of Hispanic/Latino origin. There is a continuing need for filling engineering jobs in our current and future economy. This project will significantly broaden participation of LatinX youth in engineering activities at a critical point as they make career decisions. Design Squad Global LatinX expands on a tested model previously funded by NSF and shown to be successful. It will enable LatinX youth to view themselves as designers and engineers and to build from their strengths to expand their skills and participation in science and engineering. The project goals are to: 1) develop an innovative inclusive approach to informal engineering education for LatinX students that can broaden their engineering participation and that of other underrepresented groups, (2) to galvanize collaborations across diverse local, national, and international stakeholders to create a STEM learning ecosystem and (3) to advance knowledge about a STEM pedagogy that bridges personal-cultural identity and experience with engineering knowledge and skills. Project deliverables include a conceptual framework for a strength-based approach to engineering education for LatinX youth, a program model that is asset based, a collection of educational resources including a club guide for how to scaffold culturally responsive engineering challenge activities, an online training course for club leaders, and a mentoring strategy for university engineering students working with middle school youth. Project partners include the global education organization, iEARN, the Society of Women Engineers, and various University engineering programs.

The research study will employ an experimental study design to evaluate the impact on youth participating in the Design Squad LatinX programs. The key research questions are (1) Does participation increase students' positive perceptions of themselves and understanding of engineering and global perspectives? (2) To what extent do changes in understanding engineering vary by community (site) and by student characteristics (age, gender, ethnicity)? (3) Do educators and club leaders increase their positive perceptions of youths' funds of knowledge and their own understanding of engineering? and (4) Do university mentors increase their ability to lead informal engineering/STEM education with middle school youth? A sample from 72 local Design Squad LatinX clubs with an enrollment of 10-15 students will be drawn with half randomly assigned to the participant condition and half to the control condition. Methods used include pre and post surveys, implementation logs for checks on program implementation, site visits to carry out observations, focus groups with students and interviews with adult leaders. Data will be analyzed by estimating hierarchical linear models with observations. In addition, in-situ ethnographically-oriented observations as well as interviews at two sites will be used to develop qualitative case studies.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Mary Haggerty
resource project Media and Technology
Families play a large role in igniting children's interest in science pathways, but they may not always have access to high-quality materials that demonstrate clear connections between science and their daily lives. This project will address this issue by developing high-interest materials that teach the science of food preparation to families with children ages 7-13. These materials include the following four components: (a) Food Labs, food-based investigations taking place in museums or in food service facilities; (b) take-home kits allowing families to conduct similar types of Food Labs at home; (c) a series of question starters called Promoting Interest and Engagement in Science (PIES) designed to facilitate meaningful family conversations around food preparation; and (d) a mobile app designed to deepen families' understandings of relevant science concepts and containing embedded measures of STEM learning. This project will advance knowledge regarding features of take-home materials that foster family science learning and ignite children's interest in science pathways.

This Innovations in Development Project will result in empirically-tested instructional materials that support families, with children ages 7-13, in conducting scientific investigations and holding scientific conversations related to food preparation. Kent State University, in partnership with The Cincinnati Museum Center and La Soupe, a food service provider for families who face food insecurity, will collaboratively develop and test the four interrelated sets of instructional materials mentioned above that are designed to deepen families' scientific content knowledge related to the chemistry of food preparation. To iteratively design and evaluate these materials, the team will conduct both laboratory and in-vivo experiments using a Solomon design with a pre- and post-demonstration survey. The survey will measure children's interest, knowledge, and engagement. For a month after interacting with instructional materials, families will document their science activity at home through the app. Additionally, through analyzing audio-recordings, the team will determine whether and how families ask questions using the PIES materials. Finally, post-demonstration interviews with participating families will focus on the usability and accessibility of the instructional materials. Quantitative and qualitative analyses of the pre-post surveys, interview transcripts, and audio-recordings will be used to improve the instructional materials, and the revised materials will be re-assessed using the same experimental methods and outcome measures. The final set of instructional materials will be developed and widely disseminated for easy use at other science museums, food service providers, and in families' homes. This project leverages partnerships to generate empirical knowledge on features of learning environments that support family science learning and engagement, resulting in empirically-based materials designed to broaden participation in science. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Bradley Morris John Dunlosky Whitney Owens
resource project Exhibitions
The project will refine, research and disseminate making exhibits and events that the museum has developed and tested to support early engineering skill development. The project will use cardboard, a familiar and flexible material, to support the activities. The goal is to develop insights and resources for informal educators across the museum field and beyond into how to effectively structure and facilitate open-ended maker education experiences for visitors that expand the number and kinds of museums and families who can engage in these activities. Maker education is often linked to Science, Technology, Engineering and Mathematics (STEM) learning and uses hands-on and collaborative approaches to support activities and projects that foster creativity, interest, and skill development. To address patterns of inequitable access to and participation in both formal and informal learning opportunities, the project will be designed to engage families from under-represented communities and research how they participate in informal engineering activities and environments. The project will make a suite of resources available for museums and other ISE practitioners that will be developed through iterative testing at all of the different settings. These resources will be made widely available via an open access online portal.

The project will research how effectively the use of cardboard making exhibits and events engage families, particularly families from underrepresented groups, in STEM and early engineering. The project's theoretical framework combines elements of: (1) learning sciences theories of family learning in museums; (2) making as a learning process; (3) early engineering practices and dispositions, and (4) equity in museums and the maker movement. The research will be conducted within two multi-month implementations of a large-scale Cardboard Engineering gallery at the Science Museum of Minnesota and two-week scaled implementations of the gallery at each of three recruited partner museum sites. The project design interweaves evaluation and research aims. Paired observations and surveys will be used to research how effectively the project is working in different venues. This integration of research and evaluation will generate a large data set from which to generalize about cardboard making across contexts. Case studies will be used to identify barriers to engagement that can be remedied, but they will provide a rich data set for understanding family learning and engineering in making. Research findings and products will be posted on the Center for Informal Science Education website and submitted for publication in peer-reviewed journals such as Visitor Studies, ASTC Dimensions, the Journal of Pre-College Engineering Education Research and others.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
resource project Media and Technology
It is estimated that there could be 40 billion earth-sized planets orbiting in the habitable zones of stars in the Milky Way. Major advances in long range telescopes have allowed astronomers to identify thousands of exoplanets in recent decades, and the discovery of new exoplanets is a now a common occurrence. Public excitement for the discoveries grown alongside these discoveries, thus opening new possibilities for inspiring a new generation of scientists and engineers that may dream of one day visiting these planets. This project investigates the use of interactive, intelligent educational technologies to generate interest in STEM by allowing learners to explore and even create their own exoplanets. Research will occur across several informal learning contexts, including summer camps, after school programs, planetarium shows, and at home. The approach is based on the idea of "What if?"questions about Earth (e.g., "What if the Moon did not exist?"), designed to trigger interest in STEM and frame exploratory and elaborative discussions around hypothetical science questions that are subsequently linked to the search for habitable exoplanets. Learners are able to interact with and explore scientifically accurate simulations of alternative versions of Earth, while making observations and posing explanations for what they see. Technology-based informal learning experiences designed to act as triggers for and sustainment of interest in STEM have the potential to plug the leaky STEM pipeline, and thus have profound implications for the future of science and technology in the United States.

The project seeks to advance the science of designing technologies for promoting interest in STEM and informal astronomy education in several ways. First, the project will develop simulations for exploratory learning about astronomy and planetary science. These simulations will present hypothetical worlds based on what-if questions and feasible models of known exoplanets, thus giving learners a chance to better understand the challenges of finding a habitable world and learning about what is needed to survive there. Second, a new PBS NOVA Lab will be developed that will focus on Exoplanet education. This web-based activity has the potential to reach millions of learners and will help them understand how planets are formed and the requirements for supporting life. Learners who use the lab will have an opportunity to invent their own exoplanets and export them for first-person exploration. Third, researchers on the project will design and implement Artificial Intelligence-based pedagogical agents to support learning and promote interest. These agents will inhabit the simulations with the learner, acting as a coach and guide, and be designed to be culturally responsive and personalized based on learner preferences. Fourth, interactive exoplanet-focused planetarium shows, that will involve live interaction with simulations, will take place at the Fiske Planetarium (Boulder, CO). Finally, the project will develop a server-based infrastructure for tracking and supporting long term development of interest in STEM. This back-end will track fine-grained behaviors, including movement, actions, and communications in the simulations. Such data will reveal patterns about how interest develops, how learners engage in free-choice learning activities, and how they interact with agents and peers in computer simulations. A design-based research methodology will be employed to assess the power of these different experiences to trigger interest and promote learning of astronomy. A range of different pathways for interest in STEM will therefore be considered and assessed. Research will measure the power of these experiences to trigger interest in STEM and promote re-engagement over time. Innovation lies in the use of engaging and intelligent technologies with thought-provoking pedagogy as a method for extended engagement of diverse young learners in STEM. Project research and educational resources will be widely disseminated to researchers, designers developers and the general public via peer-reviewed research journals, conference presentations, informal STEM education networks of science museums, children's museums, Fab Labs, and planetariums, and public media such as public television's NOVA science program website.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: H Chad Lane Neil Comins Jorge Perez-Gallego David Condon
resource project Public Programs
This Research in Service to Practice project will bring together representatives from six long-standing youth programs, experts in the field of out-of-school-time youth programming, and education researchers to collaboratively explore the long-term (15-25 years) impact of STEM-focused, intensive (100+ hours/year), multi-year programming. The six partnering programs have maintained records with a combined total of over 3000 alums who participated between 1995 and 2005. This four-year research project uses an explanatory, sequential, mixed-method design to carry out four steps: (1) identify and describe the impact on the lives of program alums who are now ages 30 to 45; (2) identify causal pathways from program strategies to long-term outcomes; (3) develop an understanding of these pathways from the perspective of the people who experienced them; and (4) disseminate this knowledge broadly to those associated with STEM-focused programming. Research questions include: How did these programs affect youth's lives as they progressed toward and into adulthood? What program strategies and what participant attributes contributed most to the staying power of these effects? What life events and social structures supported and inhibited participant outcomes? This project describes the effects, identifies the causal pathways, and produces materials that programs can use for both strategic planning and generating support resources. Additionally, this project provides research methodology for organizations that want to conduct their own retrospective research and lays a foundation for a more comprehensive study that includes programs without historical documentation. The project aligns with NSF's Big Idea "NSF INCLUDES: Transforming education and career pathways to help broaden participation in science and engineering" by providing essential information about the long-term effect of interventions on educational and career pathways in STEM.

The project's approach involves three phases: (1) research preparation, (2) causal structural modeling of survey data from approximately 2,000 respondents, and (3) rich qualitative follow-up. Human ecological and self-determination theories inform data collection and analyses at every project phase. In the preparation phase, program staff complete program profiles from an historic perspective by identifying program strategies that may have included, for example, scientific research, robotics development, teaching science in informal settings, and working in scientific research labs. In the quantitative phase, the project will recruit alums who attended one of the 6 youth programs between 1995 and 2005 to submit a current resume and complete an online questionnaire, based on the following scaled variables: retrospective recall of basic psychological need satisfaction and frustration in relation to perceived program strategies; STEM identity (at three time periods: pre-program; post-program; and current); current well-being; career influences; and career barriers. The questionnaire also includes open-ended questions about life events related to the following categories: family and friends, school and work, and living conditions. Analysis of the questionnaire will lead to development of a causal structural model. In the qualitative phase, data will be collected from a purposefully selected sample of 30 alums based on findings from the quantitative phase. Methods include interviews, photo journals, and STEM pathways maps. Analysis of interviews, resumes, and photo journals take place within the structure of basic psychological need satisfaction and motivational quality across ecological systems over time. Qualitative analysis uses the constant comparative method, and findings are used to update and refine the final causal structural model and inform overall findings, conclusions, and recommendations of the project.

Since the 1990s, out-of-school time programs have engaged youth from underserved communities in STEM learning and in building interest in STEM careers, yet these programs often based on untested assumptions that participation has lasting effects on education, career, and life choices related to STEM. This Research in Service to Practice project has the potential to 1) guide practitioners in program improvement and improved program outcomes; 2) provide insight into achieving program goals, such as equity, increased well-being of participants, an informed citizenry, and a diversified STEM workforce; and 3) inform multi-stakeholder decision-making with respect to this type of programming. This research also builds a foundation of research data collection and analysis methods to guide and support future research on long term-impacts and youth STEM programming. Dissemination strategies include a website, webinars, video, infographics, conference presentations, and written reports to reach stakeholders including practitioners, researchers, administrators, and funders.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -