Skip to main content

Community Repository Search Results

resource project Media and Technology
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.

In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).

Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
DATE: -
resource evaluation Public Programs
This study explored the effect of depth of learning (as measured in hours) on creativity, curiosity, persistence and self-efficacy. We engaged ~900 parents and 900 students across 21 sites in Washington, Chicago, Los Angeles, New York, Alabama, Virginia and the United Arab Emirates, in 5-week (10-hr) Curiosity Machine programs. Iridescent trained partners to implement the programs. Thus, this analysis was also trying to establish a baseline to measure any loss in impact from scaling our programs and moving to a “train-the-trainer” model. We analyzed 769 surveys out of which 126 were paired. On
DATE:
TEAM MEMBERS: Iridescent
resource project Games, Simulations, and Interactives
EMERGE in STEM (Education for Minorities to Effectively Raise Graduation and Employment in STEM) is a NSF INCLUDES Design and Development Launch Pilot. This project addresses the broadening participation challenge of increasing participation of women, the at-risk minority population, and the deaf in the STEM workforce. The project incorporates in and out-of-school career awareness activities for grades 4-12 in a high poverty community in Guilford County, North Carolina. EMERGE in STEM brings together a constellation of existing community partners from all three sectors (public, private, government) to leverage and expand mutually reinforcing STEM career awareness and workforce development activities in new ways by using a collective impact approach.

This project builds on a local network to infuse career exposure elements into the existing mutually reinforcing STEM activities and interventions in the community. A STEM education and career exposure software, Learning Blade, will be used to reach approximately 15,000 students. A shared measurement system and assessment process will contribute to the evaluation of the effectiveness of the collective impact strategies, the implementation of mutually reinforcing activities across the partnership and the extent to which project efforts attract students to consider STEM careers.
DATE: -
TEAM MEMBERS: Gregory Monty Margaret Kanipes Malcolm Schug Steven Jiang
resource research Public Programs
This article discusses the Youth in Science Action Club (SAC), which uses citizen science to investigate nature, document their discoveries, share data with the scientific community, and design strategies to protect the planet. Through collaborations with regional and national partners, SAC expands access to environmental science curriculum and training resources.
DATE:
TEAM MEMBERS: Laura Herszenhorn Katie Levedahl Suzi Taylor
resource evaluation Afterschool Programs
The Society for Science and the Public’s Advocate Grant Program provides selected Advocates with funding, resources, and information. Advocates include classroom teachers, school and district administrators, university professors, and informal science educators in community-based programs. The role of the Advocate is to support three or more underserved middle or high school students in the process of advancing from conducting a scientific research or engineering design project to entering a scientific competition. Advocates receive a stipend of $3,000; opportunities to meet and interact with
DATE:
resource research Public Programs
This poster was presented at 2017 Campus Office of Undergraduate Research Initiatives (COURI) Symposium, El Paso, TX. It describes the Work With a Scientist (WWASP) program, in which scientists and high school students engage in co-generative dialogues.
DATE:
TEAM MEMBERS: Paola Gama Pei-Ling Hsu
resource evaluation Public Programs
This summative evaluation report focuses on the impact that the Working with a Scientist Program at the University of Texas at El Paso (UTEP) had on its student participants. Student participants were recruited from regional high schools that are categorized as Title I schools, due to the large population of low income students that they serve. The participants engaged in mentored research activities a UTEP every other Saturday during the spring semester and on weekdays during the summer. Their mentors were professional scientists from different STEM disciplines, such as Chemistry, Immunology
DATE:
TEAM MEMBERS: Guadalupe Corral Lizely Madrigal
resource evaluation Public Programs
This report comprises the third part of a 4-year evaluation assessing the impact of the Working with a Scientist Program (WWASP) at the University of Texas at El Paso (UTEP) had on its student-participants. This report includes an assessment of the program’s impact on the third cohort of student-participants. To assess the students’ overall performance, several measures were used. First, a review of participant’s academic performance before and after their involvement in the program was conducted. Second, the impacts that the programs’ cogenerative dialogues (cogens) had in the third cohort of
DATE:
TEAM MEMBERS: Justin Magee
resource evaluation Public Programs
This report is part of a four-year evaluation assessing the impact of the Working with a Scientist Program (WWASP) at the University of Texas at El Paso (UTEP) had on its student-participants. This report includes an assessment of the impact on the first two cohorts of student-participants. This program selected participants from local high schools to take part in research activities for the spring and summer semester. To assess the students’ overall performance, several measures were used. First, a review of participant’s academic performance before and after their involvement in the program
DATE:
TEAM MEMBERS: Lizely Madrigal-Gonzalez Guadalupe Corral
resource evaluation Public Programs
The University of Minnesota Extension (UME) contracted Garibay Group to conduct a summative evaluation of the Driven to Discover program (often referred to as D2D by youth participants and adult leaders) to assess how adult leaders in Informal Science Education (ISE) settings used the curriculum and citizen science projects as conduits to engage youth in scientific inquiry.
DATE:
TEAM MEMBERS: Karen Oberhauser Cecilia Garibay
resource evaluation Media and Technology
This report describes an evaluation of two educational programs that Iridescent offered with a grant from the National Science Foundation. These two programs were developed for youth and their families and were organized around open-ended Engineering Design Challenges. These are hands-on problem-solving activities supported by a web-based platform known as the Curiosity Machine. The Curiosity Machine and the Design Challenges were designed to work together to engage learners in fundamental physics and engineering concepts in fun and open-ended ways, while enhancing their curiosity, creativity
DATE:
TEAM MEMBERS: Tara Chklovski Daniel Hickey
resource project Media and Technology
Iridescent is a not-for-profit company that develops and implements informal science and engineering experiences for students by facilitating the translation of the work that scientists and engineers do in a way that makes that work accessible to families. The proposal expands the Iridescent outreach activities funded by the Office of Naval Research, to provide a blended combination of in-person and online support to the families of underrepresented populations. The project is producing twenty videos of scientists and engineers presenting their research that are closely aligned with one hundred scientific inquiry and engineering design-based experiments and lesson plans. These digital resources, collectively called the Curiosity Machine, provide opportunities for parents and children to engage in scientific inquiry and engineering design in multiple face-to-face and online environments, including mobile technologies. The evaluation findings from this project provide a model of how to engage STEM education practitioners, teachers and online communities, to substantively connect underserved communities, in both informal and more formal learning environments to develop experiences with engineering design and to improve students' perspectives about and motivations to prepare for STEM careers. The Curiosity Machine portal is designed to present scientists and engineers explaining the work that they do in a way that makes it accessible to parents and students. Iridescent is working at three sites across the country in South Los Angeles, the South Bronx in New York City, and San Francisco. Students and their families have multiple access points to the science and engineering videos and materials through after school activities, Family Science Nights and summer camps. The project is piloting the use of electronic badges, similar to those offered in the Boy and Girl Scouts as a mechanism to enhance the engagement and persistence of students in the online activities. The project is developing ways to evaluate student engagement and performance through the analysis of the products that students submit online in response to particular science and engineering challenges. Students can also gain extra credit at school for their participation in the Curiosity Machine activities. The materials that the Curiosity Machine activities and challenges use are those that are commonly available to families, and the project provides access to mobile technology to facilitate participation by families. Student access to out of school science and engineering experiences is limited by the resources in terms of time and availability science centers have available. This project develops the resources and tools to bridge the in-school and out of school activities for students through the use of videos and online participation in ways that expand the opportunity of students from underserved populations to continue to engage in substantive science and engineering experiences beyond what they might get during an intermittent visit to a science center. The research and evaluation that is part of this study provides information about how new forms of extrinsic motivation might be used to support student engagement and persistence in learning about science and engineering.
DATE: -
TEAM MEMBERS: Tara Chklovski