Skip to main content

Community Repository Search Results

resource project Public Programs
The National Academies of Sciences' Board on Chemical Sciences and Technology (BCST) and Board on Science Education (BOSE) are collaborating on a three-year project to develop a framework for effective chemistry communications, outreach, and education in informal settings. The initiative will include a "landscape" study that will synthesize lessons learned from practice along with education and learning science research about chemistry learning and teaching in informal and formal settings. The overall process will define a set of principles for engaging the public with chemistry and embed these principles into a broad framework that chemists and informal science education professionals could use to identify a set of effective strategies for a given audience and a given educational or communication goal. The guidance and tools resulting from this activity, which is a chemistry-specific case study, should be more generally applicable to science and engineering communications, informal education and outreach. Findings are also likely to apply to aspects of formal education.
DATE: -
TEAM MEMBERS: Teresa Fryberger Dorothy Zolandz Martin Storksdieck
resource research Public Programs
This is the final report of the Informal Science Education (ISE) supplemental two year NSF grant for the partnership between CCI Solar Fuels and Westside Science Club that ran between October 2012 and July 2014. After a brief program overview and goals, it lists the program components. Then it traces the history of each partner, including a partnership with Wildwood High School in Santa Monica, and LA Makerspace. Each section also briefly outlines the evaluation performed by a professional evaluator. The program will continue with a partnership with a local Pasadena, CA museum called Kidspace
DATE:
TEAM MEMBERS: Michelle Hansen Benjamin Dickow Ariel Levi Simons Kim Burtnyk Shu Hu Paul Bracher Anna Beck Carolyn Patterson Siddharth Dasgupta
resource research Public Programs
These posters about the Nanoscale Informal Science Education Network were presented at the 2014 AISL PI Meeting in Washington, DC.
DATE:
TEAM MEMBERS: Museum of Science, Boston Vrylena Olney
resource research Public Programs
This is the poster for the CCI Solar Fuels and Westside Science Club collaboration presented by Michelle Hansen and Benjamin Dickow at the 2014 AISL PI meeting in Washington DC.
DATE:
TEAM MEMBERS: California Institute of Technology Center for Chemical Innovation Michelle Hansen
resource project Media and Technology
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE: -
TEAM MEMBERS: WGBH Educational Foundation Paula Apsell
resource evaluation Exhibitions
RK&A was contracted by Liberty Science Center (LSC) to conduct a formative evaluation for the development of a multi-touch table in collaboration with the Center for Enabling New Technologies Through Catalysis (CENTC). The touch table included four stations at which visitors could build molecules for crude oil products like aspirin and plastic water bottles. How did we approach this study? This evaluation explored engagement, usability, and meaning making from the CENTC multi-touch table, which was displayed at LSC in the Energy Quest exhibition. An RK&A evaluator observed and interviewed
DATE:
TEAM MEMBERS: Randi Korn
resource project Public Programs
The University of Texas at El Paso will conduct a research project that implements and documents the impact of co-generative dialogues on youth learning and youth-scientist interactions as part of a STEM research program (i.e., Work with A Scientist Program). Co-generative dialogues seek to specifically assist with communication and understanding among collaborators. Over four years, 108 11th grade youth from a predominantly (90%) Hispanic high school will conduct STEM research with twelve scientists/engineers (e.g., chemist, civil engineer, geologist, biologist) and undergraduate/graduate students as part of 7 month-long after school program, including bi-weekly Saturday activities for 5 months followed by an intensive month-long, self-directed research project in the summer. Youth will be randomly assigned to experimental groups that include the co-generative dialogue treatment and control groups without the intervention. The scientists and their STEM undergraduate/graduate students will participate in both experimental and control groups, with different youth. Youth will receive high school credit to encourage participation and retention. The PI team hypothesizes that co-generative dialogues will result in improved learning, communication, and research experiences for both youth and scientists. Educational researchers will conduct co-generative dialogues, observations, interviews, and surveys using validated instruments to address the following research goals: (1) To investigate the impact of the treatment (co-generative dialogues) on youth knowledge, attitudes, perceptions of their experience, and their relationships with the scientists; (2) To investigate the impact of the treatment on scientists and graduate students; and (3) To identify critical components of the treatment that affect youth-scientist interactions. It is anticipated that, in addition to providing in-depth STEM research experiences for 108 youth from underrepresented groups at a critical time in their lives, the project will result in widely applicable understandings of how pedagogical approaches affect both youth learning and scientist experiences. The project also seeks to bridge learning environments: informal, formal, university and digital.
DATE: -
TEAM MEMBERS: Pei-Ling Hsu Elena Izquierdo
resource project Public Programs
The Westside Science Club (WSSC) is an out-of-school time opportunity that brings participant-directed STEM activities to under-resourced late-elementary and middle school students in low-income housing units in Los Angeles. WSSC and CCI Solar began a collaboration in 2012 with funding from the NSF to connect research scientists from Caltech with the underserved youth in the club. Another community partner, Wildwood School, provided high school students to act as near-peer mentors for the club members. CCI Solar's research on the efficient and economical conversion of solar energy into stored chemical fuel provides an entry point for informal science education activities designed to introduce pre-high school participants to basic chemistry and related STEM concepts such as physics and plant biology. Activities were largely student driven, though lessons were developed by the team of facilitators including the club's founder Ben Dickow, Wildwood teacher Levi Simons, and students, post-docs, and staff from Caltech. Each lesson was tied to CCI Solar's research through a mind-map of related chemistry concepts. The activities were mostly intended to be "maker-type" experiences that allowed the club members to follow their own interests and questions. Caltech students and postdocs from CCI Solar helped deliver activities while honing their science communication skills with the young WSSC audience. The team is currently adapting the model of this successful collaboration to develop another science club in a different Los Angeles community. Two-years of lessons developed from this project, an evaluation of the project by Kimberly Burtnyk of Science for Society, and a model on how to replicate such a program are available in the project final report below. This was a two-year pilot program that was completed in July 2014.
DATE: -
TEAM MEMBERS: California Institute of Technology Center for Chemical Innovation Carolyn Patterson Siddharth Dasgupta Michelle Hansen Benjamin Dickow
resource project Professional Development, Conferences, and Networks
The proposed CAREER study uses a comprehensive mixed-methods design to develop measures of motivational beliefs and family supports for Spanish and English speaking Mexican-origin youth in high school physical science. The research examines a three-part model which may provide a deeper understanding of how Mexican families support youth through their general education strategies, beliefs about physical science, and science specific behaviors. This approach incorporates motivation and ecodevelopmental theories while pursuing an innovative line of research that examines how the contributions of older siblings and relatives complement or supplement parental support. The study has four aims which are to (1) to develop reliable, valid measures of Mexican-origin adolescent motivational beliefs and family supports in relation to high school chemistry and physics, (2) to test whether family supports predict motivational beliefs and course enrollment, (3) to test how indicators in Aim 2 vary based on gender, culture, English language skills and relationship quality, and (4) to examine how family supports strengthen or weaken the relationship between school-based interactions (teachers and peer support) and the pursuit of physical science studies. Spanish and English-speaking Mexican-origin youth will participate in focus groups to inform the development of a survey instrument which will be used in a statistical measurement equivalence study of 300 high school students in fulfillment of Aim 1. One hundred and fifty Mexican high school students and their families will participate in a longitudinal study while students progress through grades 9-12 to examine Aims 2- 4. Data to be collected includes information on science coursework, adolescent motivational beliefs, supports by mothers and older youth in the family, and family interactions. All materials will be in English and Spanish. The educational and research integration plan uses a three pronged approach which includes mentoring of doctoral students, teacher outreach, and the evaluation of the ASU Biodesign high school summer internship program using measures resulting from the research. It is anticipated that the study findings will provide research-based solutions to some of the specific behaviors that influence youth motivation in physical sciences. Specifically, the study will identify youth that might be most affected by an intervention and the age of maximum benefit, as well as valid, reliable measures of youths' motivation that can used in interventions to measure outcomes. The study will also identify family behaviors that may be influenced, including education strategies for school preparation, beliefs about physical science, and sciece-specific strategies such as engaging in science activities outside school. The findings will be broadly disseminated to science teachers, scholars, and families of Mexican-origin youth. This multi-tiered approach will advance current scholarship and practice concerning Mexican-origin adolescents' pursuit of physical science.
DATE: -
TEAM MEMBERS: Sandra Simpkins
resource project Public Programs
The World Biotech Tour (WBT) is a multi-year initiative that will bring biotechnology to life at select science centers and museums worldwide. The program, supported by the Association of Science-Technology Centers (ASTC) and Biogen Foundation, is scheduled to run from 2015-2017, with the 2015 cohort in Belgium, Japan, and Portugal. The WBT will increase the impact and visibility of biotechnology among youth and the general public through hands-on and discussion-led learning opportunities. Applications are now open for the 2016 cohort! Learn more and submit an application at http://www.worldbiotechtour.org/become-a-stop
DATE: -
TEAM MEMBERS: Association of Science-Technology Centers Carlin Hsueh