Skip to main content

Community Repository Search Results

resource research Media and Technology
The characteristics of interaction and dialogue implicit in the Web 2.0 have given rise to a new scenario in the relationship between science and society. The aim of this paper is the development of an evaluation tool scientifically validated by the Delphi method that permits the study of Internet usage and its effectiveness for encouraging public engagement in the scientific process. Thirty four indicators have been identified, structured into 6 interrelated criteria conceived for compiling data that help to explain the role of the Internet in favouring public engagement in science.
DATE:
TEAM MEMBERS: Lourdes Lopez Maria Dolores Olvera-Lobo
resource evaluation Public Programs
The National Federation of the Blind (NFB), in partnership with scholars from Utah State University and educators from the Science Museum of Minnesota (SMM), has developed the Spatial Ability and Blind Engineering Research (SABER) project to assess and improve the spatial ability of blind teens in order to broaden the participation of blind students in STEM fields. Activities began this summer (2018) with a week-long, residential engineering design program for thirty blind high school students at NFB headquarters in Baltimore. The evaluation focused on perceptions of process and measures of
DATE:
resource project Informal/Formal Connections
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Museum of Science, Boston (MOS) and Boston University (BU) will conduct a Pilot and Feasibility Study project that leverages the current Living Laboratory (LL) model and expand it to engage high school students (teens) in experimental psychology research, science communication and science education activities. In LL, which is now an extensive network of museums and university researchers across the country, scientists and museum staff collaborate to engage children in studies on the museum floor and educate caregivers about the research. Multi-site implementation and evaluation of LL has also documented positive impacts for undergraduate researchers. Many sites are eager to extend these benefits to high school students by engaging them as practitioners within the model and by providing them with opportunities to engage in current research, education and communication, thereby helping to foster stronger youth identities with science and its applications in society. This project expands a ten-year LL partnership between MOS and BU to: 1) pilot a program in which high school students both conduct scientific research and engage the public in learning about science; 2) explore strategies for museums and universities to collaboratively engage, support and mentor high school students in science research, communication and education activities; 3) document curricular, other programmatic, and evaluation materials; and 4) convene professional participants to provide feedback on pilot materials, and assess the viability of implementing similar programs at additional sites. Guided by developmental evaluation, these activities will generate knowledge for the field, and act to increase professional capacity to integrate experiences for teens at multiple LL sites in future projects. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Becki Kipling Peter Blake Rachel Fyler Katie Todd Ian Campbell Tess Harvey Owen Weitzman Allison Anderson
resource research Public Programs
Increased integration and synergy between formal and informal learning environments is proposed to provide multiple benefits to science learners. In an effort to better bridge these two learning contexts, we developed an educational model that employs the charismatic nature of arachnids to engage the public of all ages in science learning; learning that aligns with the Next Generation Science Standards (NGSS Disciplinary Core Ideas associated with Biodiversity and Evolution). We created, implemented, and evaluated a family-focused, interactive science event—Eight-Legged Encounters (ELE)—which
DATE:
TEAM MEMBERS: Eileen Hebets Melissa Welch-Lazoritz Pawl Tisdale Trish Wonch Hill
resource project K-12 Programs
This project, an NSF INCLUDES Design and Development Launch Pilot, managed by the University of Nevada, Reno, addresses the grand challenge of increasing underrepresentation regionally in the advanced manufacturing sector. Using the state's Learn and Earn Program Advanced Career Pathway (LEAP) as the foundation, science, technology, engineering and mathematics (STEM) activities will support and prepare Hispanic students for the region's workforce in advanced manufacturing which includes partnerships with Truckee Meadows Community College (TMCC), the state's Governor's Office of Economic Development, Charles River Laboratories, Nevada Established Program to Stimulate Competitive Research (Nevada EPSCoR) and the K-12 community.

The expected outcomes from the project will inform the feasibility, expandability and transferability of the LEAP framework in diversifying the state's workforce locally and the STEM workforce nationally. Formative and summative evaluation will be conducted with a well-matched comparison group. Dissemination of project results will be disseminated through the Association for Public Land-Grant Universities (APLU), STEM conferences and scholarly journals.
DATE: -
TEAM MEMBERS: David Shintani Julie Ellsworth Karsten Heise Robert Stachlewitz Regina Tempel
resource project Professional Development, Conferences, and Networks
The University of Maine will address the grand challenge of increasing Native American participation in the science,technology, engineering and mathematics (STEM) enterprise in an NSF INCLUDES Design and Development Launch Pilot project addressing culturally relevant pedagogy, incorporating Community Elders, Cultural Knowledge Keepers, and mainstream secondary and higher education institutions in the development of STEM pedagogy that can be replicated to other underrepresented and underserved populations. Partners in the effort include the Wabanaki Youth in Science program (WaYS)(a non-profit organization), Salish Kootenai College (a Tribal College), Massachusetts Institute of Technology (a research university), the National Indian Education Association (a non-profit membership organization) and the current NSF INCLUDES Design and Development Launch Pilot project at the University of Maine (the Stormwater Research Management Team (SMART)). This NSF INCLUDES partnership provides students with evidence-based STEM activities involving culturally relevant internships, mentoring, STEM professional development activities and other support. Non-native students will reciprocally participate in Native American learning environments.

The foundation for the project's activities is based on the WaYS program in science education that incorporates Traditional Ecological Knowledge (TEK). The goals of the project are to: 1) create and integrate curriculum that embraces TEK and western science as equal partners; 2)develop and implement protocols to incorporate a continued mentorship program for WaYS and STREAM engineering students; 3)develop a framework to bridge the gap between high school and college; and 4) foster collaboration among Community Elders, Cultural Knowledge Keepers and University of Maine faculty in a model that could be transferred to other communities. Internal and external evaluation activities will add to the scholarly literature on educating Native Americans and non-native students in STEM disciplines. Dissemination of project results will include published peer-reviewed journal articles on newly developed pedagogy and conference presentations at the American Indian Science and Engineering (AISES) national conference, the National Diversity in STEM Conference, National Science Teachers Association, AAAS, ASEE and the National NSF INCLUDES Network.
DATE: -
TEAM MEMBERS: Darren Ranco John Daigle Mindy Crandall Shaleen Jain
resource project K-12 Programs
Improving retention rates in postsecondary engineering degree programs is the single most effective approach for addressing the national shortage of skilled engineers. Both mathematics course placement and performance are strong graduation predictors in engineering, even after controlling for demographic characteristics. Underrepresented students (e.g., rural students, low-income students, first-generation students, and students of color) are disproportionately represented in cohorts that enter engineering programs not yet calculus-ready. Frequently, the time and cost of obtaining an engineering degree is increased, and the likelihood of obtaining the degree is also reduced. This educational problem is particularly acute for African American students who attended select high schools in South Carolina, with extremely high-poverty rates. As a result, the investigators proposed an NSF INCLUDES Launch Pilot project to develop a statewide consortium in South Carolina - comprising all of the public four-year institutions with ABET-approved engineering degree programs, all of the technical colleges, and 118 high schools with 70% or higher poverty rates, to pinpoint and address the barriers that prevent these students from being calculus ready in engineering.

This NSF INCLUDES Launch Pilot project will map completion/attrition pathways of students by collecting robust cross-sectional data to identify and understand the complex linkages between and behind critical decisions. Such data have not been available to this extent, especially focused on diverse populations. Further, by developing structural equation models (SEMs), the investigators will be able to build on extant research, contributing directly to understanding the relative impact of a range of latent variables on the development of engineering identity, particularly among African American, rural, low-income, and first-generation engineering students. Results of the pilot interventions are likely to contribute to the empirical and theoretical literature that focus on engineering persistence among underrepresented populations. Project plans also include developing a centralized database compatible to the Multiple Institution Database for Investigation of Engineering Longitudinal Development (MIDFIELD) project to share institutional data with K-12 and postsecondary administrators, engineering educators, and education researchers with NSF INCLUDES projects and beyond.
DATE: -
TEAM MEMBERS: Anand Gramopadhye Derek Brown Eliza Gallagher Kristin Frady
resource project K-12 Programs
The LiFE Project, an NSF INCLUDES Design and Development Launch Pilot, will investigate and design a collaborative effort to counter the stereotypical expectation that boys are "naturally" better at science and math which becomes a self-fulfilling prophecy, silently shaping the girls'own perceptions of their ability. LiFE collaborators will address this problem at its source: the early learning experiences of elementary school girls. The elementary-middle school period is critical because by 8th grade, many girls have left the STEM pathway forever. The key to reversing the trend is finding effective ways to showcase STEM as a collaborative, people-rich space in which girls can participate together, be themselves, and engage in exploration. Research indicates that girls prefer collaborative activities that can make a difference in the world. Partnering with a coalition of economically and racially diverse New Jersey elementary schools, LiFE will employ "iSTEAM" learning strategies that encourage girls to apply the tools of various disciplines to investigate and solve real-world problems in an open environment of innovation, collaboration, and communication. This approach promises to be especially effective in engaging girls.

LiFE will build on a successful Girls Science Club (GSC) model that introduces girls in grades 3-4 to hands-on iSTEAM exploration activities using Problem/Project-Based Learning strategies. Additional activities will leverage the expertise of the project's corporate/government partners (including Apple and USARMY) to build communication and leadership skills. LiFE will sustain the GSC's benefits by developing clubs for grades 5-6 involving enriched content and long-term independent projects. Eventually, a tiered peer network will link girls from elementary school through women college students and female STEM professionals--each tier mentoring the tiers below. This network will sustain a crucial "sense of community" to retain women in STEM. Within LiFE's social innovation framework approach, participating districts will tailor the GSC to their community while also working together toward shared common goals. LiFE will study the impact of GSCs on persistence of girls' interest in STEM into grade 7. Based on this research, LiFE will develop a cost-effective template that can be replicated across the US. LiFE will bring problem-based iSTEAM concepts to girls of all academic levels in their elementary schools years while, having a community focus with participant-developed projects in a non-competitive environment and leveraging the resources of academic, corporate and government partners to foster broader participation by women in STEM careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Bruce Bukiet James Lipuma Nancy Steffen-Fluhr
resource project Professional Development, Conferences, and Networks
This NSF INCUDES Design and Development Launch Pilot will increase the recruitment, retention, and matriculation of racial and ethnic minorities in STEM Ph.D. programs contributing to hazards and disaster research. Increasing STEM focused minorities on hazards mitigation, and disaster research areas will benefit society and contribute to the achievements of specific, desired societal outcomes following disasters. The Minority SURGE Capacity in Disasters (SURGE) launch pilot will provide the empirical research to identify substantial ways to increase the underrepresentation of minorities in STEM disciplines interested in hazards mitigation and disaster research. Increasing the involvement of qualified minorities will help solve the broader vulnerability concerns in these communities and help advance the body of knowledge through the diversity of thought and creative problem solving in scholarship and practice. Utilizing workshops and a multifaceted mentorship program SURGE creates a new model that addresses the diversity concerns in both STEM and disaster fields, and make American communities more resilient following natural disasters. This project will be of interest to policymakers, educators and the general public.

The Minority SURGE Capacity in Disasters (SURGE) NSF INCLUDES Design and Development Launch Pilot will enhance the social capital of racial and ethnic minority communities by increasing their networks, connections, and access to disaster management decision-making among members of their community from STEM fields. The four-fold goals of SURGE are to: (1) increase the number of minority graduate researchers in STEM fields with a disaster focus; (2) develop and guide well-trained, qualified disaster scholars from STEM fields; (3) provide academic and professional mentorship for next generation minority STEM scholars in hazards mitigation and disaster research; and (4) develop professional and research opportunities that involve outreach and problem solving for vulnerable communities in the U.S. The SURGE project is organized as a lead-organization network through the University of Nebraska at Omaha and includes community partners. As a pilot project, SURGE participation is limited to graduate students from research-intensive universities across the country. Each student will attend workshops and training programs developed by the project leads. SURGE investigators will conduct project evaluation and assessment of their workshops, training, and mentorship projects. Results from evaluations and assessments will be presented at STEM and disaster-related conferences and published in peer-reviewed academic journals.
DATE: -
TEAM MEMBERS: DeeDee Bennett Lori Peek Terri Norton Hans Louis-Charles
resource project Professional Development, Conferences, and Networks
The NSF INCLUDES program supports models, networks, partnerships and research to ensure the broadening participation in STEM of women, members of racial and ethnic groups that have been historically underrepresented, persons of low socio-economic status, and people with disabilities.

The Algebra Project, in partnership with the Young People's Project, will convene a conference on inclusion in science, technology, engineering and mathematics(STEM) higher education in support of the National Science Foundation's Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) initiative. The conference will examine a critical question: What roles and structures are needed for a mini-backbone organization in order to scale a "bottom up" model of social change into an organized, full scale collective impact model? Additionally, the conference will develop participants' capacity to link action on the various design challenges, and backbone structures, to future actions that meet the needs of a potential Alliance on this Broadening Participation Challenge and others facing similar challenges.

Five pre-conference design teams will focus on key components to improve education of students from underrepresented and disadvantaged populations over a four-month period prior to the convening of the stakeholders in St. Louis, Missouri in 2017.
DATE: -
TEAM MEMBERS: Robert Moses Beverly Walker
resource research Public Programs
Educational approaches that provide meaningful, relevant opportunities for place-based learning have been shown to be effective models for engaging indigenous students in science. The Laulima A ‘Ike Pono (LAIP) collaboration was developed to create a place-based inclusive learning environment for engaging local community members, especially Native Hawaiians and Pacific Islanders, in scientific research at a historically significant ancient Hawaiian fishpond. The LAIP internship focused on problem-solving activities that were culturally relevant to provide a holistic STEM research experience
DATE:
TEAM MEMBERS: Judith D. Lemus
resource research Media and Technology
Charles Darwin is largely unknown and poorly understood as a historical figure. Similarly, the fundamental principles of evolution are often miss-stated, misunderstood, or entirely rejected by large numbers of Americans. Simply trying to communicate more facts about Darwin, or facts supporting the principles of evolution is inadequate; neither students nor members of the public will care or retain the information. On the contrary, building facts into a one-on-one conversational narrative creates an memorable opportunity to learn. Here, we create a digital-media, self-guided question and answer
DATE:
TEAM MEMBERS: David J. Lampe Brinley Kantorski John Pollock