Skip to main content

Community Repository Search Results

resource evaluation Public Programs
This annual report presents an overview of Saint Louis Science Center audience data gathered through a variety of evaluation studies conducted during 2015. This report includes information on the Science Center's general public audience demographics and visitation patterns, gives an overview of visitors' comments about their Science Center experience, summarizes major trends observed in the Science Center's tool for tracking educational programs, and presents highlights from a Membership study, a formative evaluation of a new Makerspace exhibition, and program evaluation of a workshop for the
DATE:
TEAM MEMBERS: Elisa Israel Sara Davis Kelley Staab Morey Group
resource research Public Programs
This guide describes what took place during NYSCI’s Big Data for Little Kids workshop series, Museum Makers: Designing With Data. In addition to detailed outlines of the activities implemented during the program, this guide includes a glossary of recurrent terms and resources used throughout the workshops. In 2017, as part of a National Science Foundation funded project, the New York Hall of Science (NYSCI) set out to teach Big Data concepts to children ages 4 – 8 years old. NYSCI developed and piloted an after-school program for families to utilize the data cycle as a method of informed
DATE:
TEAM MEMBERS: ChangChia James Liu
resource research Exhibitions
In this paper, we introduce the Exploratory Behavior Scale (EBS), a quantitative measure of young children's interactivity. More specifically, the EBS is developed from the psychological literature on exploration and play and measures the extent to which preschoolers explore their physical environment. A practical application of the EBS in a science museum is given. The described study was directed at optimizing parent guidance to improve preschoolers' exploration of exhibits in science center NEMO. In Experiment 1, we investigated which adult coaching style resulted in the highest level of
DATE:
TEAM MEMBERS: Tessa Van Schijndel Rooske Franse maartje raijmakers
resource research Public Programs
Experiences-including museum experiences- that are packaged as stories are more likely to be remembered by both children and adults. For museum visitors, the simple act of narrating what they've done even no more than ten minutes ago can make their experience more meaningful and memorable. How connections are made between a museum experience and lasting learning, are driving the collaboration between practice and research at the Chicago Children's Museum and Loyola University Chicago.
DATE:
TEAM MEMBERS: Tsivia Cohen
resource evaluation Public Programs
The "Expanding Repertoires COV Final Brief" is a report by the Committee of Visitors for the NSF Pathways project, "Expanding Repertoires of Practice: Improving Informal Science Learning Experiences for Preschool Dual Language Learners." As an exploratory research project, the Committee of Visitors - or COV - provided critical, reflective review on the progress of the project and served as the de facto evaluator for the project.
DATE:
TEAM MEMBERS: Cecilia Garibay Maureen Callanan Lisa Lopez Azuka I. MuMin Leslie C. Moore Rita Deedrick
resource research Public Programs
Informal science learning (ISL) organizations that are successful at providing meaningful science, technology, engineering, arts, and mathematics (STEAM) experiences for Latino children, youth, and their families share some common traits. They have leaders and staff who believe in the importance of developing culturally relevant models and frameworks that meet the needs and acknowledge the legacy of STEAM in Latino communities. Such organizations are willing to take risks to create experiences that are culturally meaningful, garner funding and implement programs by working closely with their
DATE:
TEAM MEMBERS: Cheryl Juarez Verónika Núñez Exploratorium
resource research Media and Technology
This position paper, co-authored Center for Childhood Creativity's Director Elizabeth Rood and Director of Research Helen Hadani, details the importance of exposing children ages 0-8 to science, technology, engineering, and math (STEM) experiences. The review of more than 150 empirical studies led Rood and Hadani to conclude that, despite what has been previously thought, modern research supports the understanding that children are capable of abstract thinking and STEM-learning from infancy, beginning before their first birthday. The Roots of STEM Success, authored in support of classroom
DATE:
TEAM MEMBERS: Helen Shwe Hadani Elizabeth Rood Amy Eisenmann Ruthe Foushee Garrett Jaeger Gina Jaeger Joanna Kauffmann Katie Kennedy Lisa Regalla
resource research Museum and Science Center Programs
This article focuses on the efforts of the Collaborative for Early Science Learning (CESL), a group of six museums led by the Sciencenter in Ithaca, New York, that partner with their local Head Start programs to provide training for teachers and opportunities for family engagement. These efforts address the gap between children’s readiness to explore science through everyday experiences and adults’ support. CESL believes that hands-on professional development (PD) opportunities for teachers and families can reduce adult discomfort with facilitating science programming and increase their
DATE:
TEAM MEMBERS: Michelle Kortenaar Victoria Fiordalis Miriam Krause Laurinda Willard Cheryl Juarez Melissa Thomas Zoe Peters Carrie Jubran Allison Sribarra
resource project Public Programs
In order to improve science, technology, mathematics, and engineering (STEM) learning, it is crucial to better understand the informal experiences that young children have that prepare them for formal science education. Young children are naturally curious about the world around them, and research in developmental psychology shows that families often support children in exploring and seeking explanations for scientific phenomena. It is less clear how to link children's natural curiosity and everyday parent-child interaction with more formal STEM learning. This collaborative project will team researchers from the University of California, Santa Cruz, the University of Texas, and Brown University with informal learning practitioners at the Children's Discovery Museum, The Thinkery, and the Providence Children's Museum in order to investigate how family interaction relates to children's causal learning, as well as how modifications to museum exhibit design and facilitation by museum staff influence families' styles of interaction and increase children's causal learning. This project is funded by the Research on Education and Learning (REAL) program which supports fundamental research by investigators from a range of disciplines in order to deepen what is known about STEM learning.

The project team will examine how ethnically and linguistically diverse samples of parents and children engage in collaborative scientific learning in three children's museums across the U.S. The research will combine observational studies of parent-child interaction in a real-world setting with experimental measures of children's causal learning. The investigators will examine how children explore and derive explanations for museum exhibits about mechanical gear function and fluid dynamics. In this way, the researchers will investigate the relation between styles of parent-child interaction and children's causal learning. The team will also investigate novel ways of presenting material within the exhibits to facilitate exploration and explanation. They will explore how signage, conversations with museum staff, parents' attitudes towards learning in museum settings, and parents' own prior knowledge about the exhibits can influence the parent-child interaction and subsequent causal learning. The project will advance the basic research goal of advancing what is known about what affects children's science content learning. It will also advance the practice-oriented goal of developing new strategies for the design of science museum exhibits and make recommendations for how parents can better talk to their children about scientific phenomena.
DATE: -
TEAM MEMBERS: David Sobel Cristine Legare Maureen Callanan
resource project Public Programs
Science researchers and practitioners are often challenged by how best to assess the effectiveness of science activities on young children whose language skills are still emerging. Yet, research has demonstrated the critical importance of early learning on individual potential. Building on evidence that movement is tightly intertwined with thinking, this project will investigate how thought and movement link as embodied learning to accelerate science understanding. Research will be conducted in the United States (US) and the United Kingdom (UK) with the aim to gather evidence for embodied interactions during science learning and articulate design principles about how museum exhibits can most effectively encourage cognitive and physical engagement with science. Such guidelines are largely absent in the field of informal STEM learning, and so this project seeks transformational change in how learning is understood and recognizes that changes in knowledge can be developed and revealed through body-based movements as well as verbally. Such a view is critically important given that many early learners communicate understanding through nonverbal channels before verbal. Research will be conducted with a diverse population of children and will explore the application of embodied learning to communities that are underrepresented in STEM. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences. During a 3-year period, researcher-practitioner teams across six museum sites will collaboratively investigate the links between movement and learning outcomes at selected science exhibits designed for young learners. Research activities will involve iteration and refinement of new instruments and protocols, through analysis of observed and automated capture of interaction data, and synthesis and interpretation of data. A design-based research methodology will be applied to address three key questions: 1) What elements of sensory and action experiences are key to informing the design of exhibits that aim to exploit embodied interactions for learning; 2) What is the role of bodily enactment /gestures in assessing children's understanding of science concepts; and 3) What cultural differences in kinds of embodied engagement emerge across diverse museum settings? Video and audio data of 400 children's exhibit interactions will be collected. Pre/post semi-structured interviews will be conducted with a subset of these participants and will focus on children's understanding of relevant science concepts as well as personal reflections on their physical and emotional experience engaging with the exhibit. This project would raise awareness of embodied approaches to learning as well as build stronger collaborations between informal STEM educators and cognitive researchers. Utilization of informal and formal dissemination networks will support wide diffusion of project outcomes. This is critically important given strong evidence pointing to the impact of preschool education in underserved populations, and ongoing national efforts by the US and UK to improve the quality of STEM learning in preschool contexts.

Project partners supported by NSF funding include The Phillip and Patricia Frost Museum of Science, University of Illinois Urbana Champaign, The Children's Museum of Indianapolis, andSciencenter (Ithaca).

Partners supported by the Wellcome Trust include University of Edinburgh, University College London, Glasgow Science Centre, Science Museum London, and Learning through Landscapes.
DATE: -
TEAM MEMBERS: Judy Brown H Chad Lane Susan Foutz Andrew Manches Sharon Macnab sara price University of Illinois, Urbana-Champaign The Children's Museum of Indianapolis Cheryl Juarez
resource evaluation Exhibitions
This study was a longitudinal summative evaluation of repeat visitors’ experiences in four Math Moves! exhibitions that were developed as part of a large collaborative exhibition development project called Math Core for Museums, and mounted at four museums around the country: Museum of Science (Boston); Museum of Life & Science (Durham, NC); Explora (Albuquerque); and Science Museum of Minnesota (St. Paul). The summative evaluation purposively selected four family groups at each institution and collected naturalistic data as the 16 groups engaged with the exhibits from 4-6 times over a two
DATE:
TEAM MEMBERS: Deborah Perry
resource project Exhibitions
The project will develop and research a new system that bridges the advantages of physical and virtual worlds to improve young children's inquiry-based science learning and engagement in a collaborative way. The project will use innovative technology and successful techniques developed for adaptive tutoring systems and bring this core research into informal learning settings where they haven't been applied before, with the goal of increasing engagement, learning and deep inquiry-based understanding in these environments. Museums and similar informal learning settings offer opportunities for children and families to learn together in an engaging way. However, without learning supports provided by people, signage, or technology, people often miss the point of the learning activity in museums. The project will develop a new genre of "intelligent" interactive science exhibits that combine proven intelligent tutoring system approaches with camera-based vision sensing to add a new layer to hands-on museum exhibits. This intelligent layer provides personalized interactive feedback to museum visitors while they experiment with physical objects in the real world. The project is a collaborative effort led by the Human Computer Interaction Institute at Carnegie Mellon University in partnership with the University of Pittsburgh Learning Research and Development Center, Children's Museum of Pittsburgh, and Carnegie Science Center. It is supported by the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings, as a part of its overall strategy to enhance learning in informal environments.

The project will research whether and how learning principles and adaptive, computer-based technologies that are effective in formal school learning be made effective in an informal museum experience with hands-on activities to enhance the learning and engagement of children and parents. The system will use intelligent camera sensing that tracks and notices children's interaction in physical and virtual spaces and provides adaptive personalized feedback via the help of an engaging character. It guides the children as well as the parents to engage in productive dialogue, helping shape a better parent-child interaction. To investigate this, the project will further develop an innovative mixed-reality system and smart adaptive system that gives personalized feedback to visitors based on their actions, guiding them to understand the world around them like a scientist. The project will gather data on learner behaviors in mixed-reality experiences in informal settings to inform how to better design intelligent science exhibits and derive patterns to support key outcomes, including learning, engagement, collaboration, and productive dialogue. The project will also research the application of these design patterns across different science content areas.
DATE: -
TEAM MEMBERS: Ken Koedinger Scott Hudson Kevin Crowley Nesra Yannier