Skip to main content

Community Repository Search Results

resource research Professional Development, Conferences, and Networks
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: K.C. Busch
resource research Public Programs
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
resource evaluation Afterschool Programs
The Arctic Harvest-Public Participation in Scientific Research (which encompasses the Winterberry Citizen Science program), a four-year citizen science project looking at the effect of climate change on berry availability to consumers has made measurable progress advancing our understanding of key performance indicators of highly effective citizen science programs.
DATE:
TEAM MEMBERS: Angela Larson Kelly Kealy Makaela Dickerson
resource project Public Programs
Milwaukee has established itself as a leader in water management and technology, hosting a widely recognized cluster of industrial, governmental, nonprofit, and academic activity focused on freshwater. At the same time, Milwaukee faces a wide range of challenges with freshwater, some unique to the region and others common to cities throughout the country. These challenges include vulnerability to flooding and combined sewer overflows after heavy rainfall, biological and pharmaceutical contamination in surface water, lead in drinking water infrastructure, and inequity in access to beaches and other recreational water amenities. Like other cities, Milwaukee grapples with the challenges global climate change imposes on urban water systems, including changing patterns of precipitation and drought.

These problems are further complicated by Milwaukee's acute racial and economic residential segregation. With a population of approximately 595,000, embedded within a metropolitan area of over 1.5 million, Milwaukee remains one of the country's most segregated cities. There is increasing urgency to engage the public--and especially those who are most vulnerable to environmental impacts--more deeply in the stewardship of urban water and in the task of creating sustainable urban futures. The primary goal of this four-year project is to foster community-engaged learning and environmental stewardship by developing a framework that integrates art with Science, Technology, Engineering, and Mathematics (STEM) experiences along with geography, water management, and social science. Synergies between STEM learning and the arts suggest that collaborations among artists, scientists, and communities can open ways to bring informal learning about the science of sustainability to communities.

WaterMarks provides an artist generated conceptual framework developed by Mary Miss / City as Living Laboratory (CALL) to help people better understand their relationship to the water systems and infrastructure that support their lives. Project activities include artist/scientist/community member-led Walks, which are designed to engage intergenerational participants both from the neighborhoods and from across the city, in considering the conditions, characteristics, histories, and ecosystems of neighborhoods. Walks are expanded upon in Workshops with residents, local scientists/experts, and other stakeholders, and include exploring current water-related environmental challenges and proposing solutions. The Workshops draw on diverse perspectives, including lived experience, scientific knowledge, and policy expertise. Art projects created by local artists amplify community engagement with the topics, including programming for teens and young adults. Free Wi-Fi will be integrated into various Marker sites around the city providing access to online, self-guided learning opportunities exploring the water systems and issues facing surrounding neighborhoods. Current programming focuses primarily on Milwaukee's predominantly African American near North Side and the predominantly Latinx/Hispanic near South Side. Many neighborhoods in these sections are vulnerable to such problems as frequent flooding, lead contamination in drinking water, inequities in safety and maintenance of green space, and less access to Lake Michigan, the city's primary natural resource and recreational amenity.

The WaterMarks project advances informal STEM learning in at least two ways. First, while the WaterMarks project is designed to fit Milwaukee, the project includes the development of an Adaptable Model Guide. The Guide is designed so that other cities can modify and employ its inclusive structure, programming, and process of collaboration among artists, scientists, partner organizations, and residents to promote citywide civic engagement in urban sustainability through the combination of informal STEM learning and public art. The Guide will be developed by a Community-University Working Group (CULab) hosted by UW-Milwaukee's Center for Community-Based Learning, Leadership, and Research and made up of diverse community and campus-wide stakeholders. In addition to overseeing the Guide’s creation, CULab will conceptualize onboarding and mentorship strategies for new participants as well as a framework for the program’s expansion and sustainability.

Second, through evaluation and research, the project will build a theoretical model for the relationships among science learning, engagement with the arts, and the distinctive contexts of different neighborhoods within an urban social-ecological system. The evaluation team, COSI’s Center for Research and Evaluation, and led by Co-PI Donnelly Hayde, aims to conduct formative, summative, and process evaluation of the Watermarks project, with the additional goal of producing evaluative research findings that can contribute to the broader field of informal learning. Evaluation foci include: How does the implementation of WaterMarks support positive outcomes for the project’s communities and the development of an adaptable model for city-scale informal science learning about urban environments? 2. To what extent do the type and degree of outcome-related change experienced by participating community residents vary across and/or between project sites? What factors, if any, appear to be linked to these changes? 3. To what extent and in what ways do the activities of the WaterMarks projects appear to have in situ effects related to the experience of place at project sites?

The project’s research team led by PI Ryan Holifield and Co-PI Woonsup Choi, will investigate how visual artistic activities introduced by the programming team as part of the Walks (and potentially other engagement activities) interact with personal, sociocultural, and physical contexts to produce distinctive experiences and outcomes of informal science learning about urban water systems. The aim of the research will be to synthesize the results from the different WaterMarks sites into an analysis generalizable beyond specific neighborhoods and applicable to other cities. The project's research questions include: 1. How does participation in Walks focused on visual artistic activities affect outcomes and experiences of informal STEM learning about urban water systems? 2. How do outcomes and experiences of informal STEM learning vary across different urban water topics, participants from different demographic groups, and contrasting sociocultural and biophysical contexts?

This Innovations in Development project is led by the University of Wisconsin-Milwaukee (UWM), in collaboration with City as Living Laboratory (CALL) and the COSI Center for Research and Evaluation.
DATE: -
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This two-year Pilots and Feasibility project seeks to build knowledge and strategic impact in the informal STEM learning field by studying how and why science-education-art collaborations yield impactful informal STEM learning experiences. By design and implementing interactive and participatory experiences for adult audiences, this project will build knowledge about how to help communities learn about environmental science and apply scientific knowledge to environmental decision-making in their lives.

The project's two overarching research questions are: (1) What are the essential elements of collaboration among scientists, educators, and artists that support learning about adaptation in a changing environment? (2) In what ways do designed, participatory, informal science learning experiences support participant learning? This pilot project will: a) develop methods for facilitating and assessing collaboration among scientists, educators, and artists; b) pilot and refine approaches for engaging scientists, educators, and artists with community members for high quality participatory experiences focus on learning about adaptation to environmental change in informal learning settings; c) pilot and refine methods to measure the outcomes for community participants on knowledge about environmental change and its application to problems in their everyday lives. This project is innovative in bridging a diverse body of scholarship in order to study the process of collaboration and the specific ways interdisciplinary collaborations foster learning. Because informal STEM learning settings often combine the work of multiple disciplines, examining the process and outcomes of collaborative, participatory STEM learning has the potential to deliver widely applicable guidance for achieving more impactful educational outcomes.

The proposed project will broaden participation by engaging adult members of environmentally vulnerable communities in participatory STEM activities and will improving individual and community well-being by delivering tools for future decision-making. The collaborative project will build valuable partnerships and capacity between disparate sectors of society, allowing co-learning and co-production of knowledge. Results will be published in scholarly journals as well as shared with community participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Amy Lesen Sameer Honwad Ama Rogan Calvin Mackie
resource research Public Programs
This report summarizes a Delphi study completed with 22 facilitators of climate adaptation workshops in the United States in 2020. The purpose of a Delphi study is to find areas of consensus around valued (or "best") practices in a particular field. In this case, the report focuses on valued practices for facilitating place-based climate adaptation workshops to maximize social learning and collective action outcomes associated with climate adaptation.
DATE:
TEAM MEMBERS: Marc Stern Lara Hansen Jennifer Brousseau Caleb O'Brien Kristin Hurst
resource project Public Programs
This program will derive knowledge on extreme weather and its concepts to be shared with youth in the Boston and Kansas City areas. Subsequently, the youth will share this knowledge by displaying it as art work on the rapid transit systems. The art projects will culminate in broad-based exhibition at the end of each group's sessions. The project will involve 200 youth per region resulting in an impact of 1000 youth per year, 80 adult mentors and 20,000 adult transportation riders in learning about extreme weather concepts. Participant organizations are the University of Mass-Boston, University of Mass-Lowell, The Massachusetts College of Art, the University of Kansas Center for Research Inc., and the Goodman Research Group Inc.

The goals of this project are to bring the topic of extreme weather to the foreground by educating youth and in turn having them educate a selected group of adults that use the rapid transit system. Groups of youths will learn about the topic through a series of meetings with mentors who are experts on the issues around extreme weather. The youth will derive their own art-works with their interpretation. These art-works will be displayed on the rapid transit systems in New England (Merrimack Valley and Worcester regions) and the Mid-West (Topeka and Kansas City areas). Using a quasi-experimental mixed methodology (demographics, bus ridership, initial level of science awareness, and interest) the goal is to understand science learning outcomes associated with the creation and public display of youth art. Research questions of importance in this regard are 1. In what ways does blending art with the science enhance youth learning about extreme weather concepts? 2. To what extent does youth art support adult learning of science? and 3. How does regional context affect learning about extreme weather?

Broader impacts will result from the youth diversity as well as the diversity of riders of the rapid transit systems where the art of extreme weather is displayed.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Robert Chen Lois Hetland Jill Lohmeier Stephen Mishol Steven Schrock Claudia Bode
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This Research in Service to Practice project examines how informal place-based collaborative learning can support local communities' planning processes related to current environmental changes. As a part of this study workshops will be conducted in 8 communities that have a range of planning mandates based on recent extreme environmental changes such as drought/wildfires, flooding, invasive species, or loss of native wildlife. Place-based adaptation workshops will be designed to be locally relevant and empower people to learn and act on their newly acquired understandings. Local community collective actions may include a range of decisions (e.g., infrastructure changes such as building defenses against sea level rise in coastal communities or improving the quality of roads to withstand higher temperatures.) Collective action may also lead to community wide behavioral changes such as individuals using less water or farmers planting different crops. The study will focus on the efficacy of the methods used in 8 workshops in communities throughout the country. Research objectives include: 1) identifying experts' belief about the most critical components of successful workshops; 2) Understanding of prior workshop outcomes and 3) test hypothesized effective practices and understand how learning takes place and collective action does or does not take place. The project addresses key AISL solicitation priorities including strategic impact on the field of informal STEM learning, advancing collaboration, and building professional capacity. It engages both public and professional audiences as described in the solicitation. Public audiences include stakeholders in each of the 8 communities such as community environmental groups, NGOs, businesses, landowners, and local government planners. Professional audiences include the workshop scientists and facilitators who will be trained in the experimental workshop approach. The project builds upon and expands the existing AISL portfolio of science communication projects such as science cafes, science festivals, science media, and library based projects. This is a collaborative project of EcoAdapt and Virginia Tech with participants from the National Parks Conservation Association, the Desert Research Institute, and the Wildlife Conservation Society and others. The research will progress through two phases. Phase 1 is designed to identify consensus-based effective practices for promoting learning and action in adaptation workshops. It includes a Delphi study to synthesize beliefs about effective practices held by experienced workshop facilitators across the United States. Phase 2 includes iterative design and research of eight adaptation workshops in various communities with a range of planning mandates and recent extreme weather experience. By iteratively revising the workshop design, the study will elucidate how different workshop components influence participant learning, individual behavioral intentions, and subsequent efforts toward collective action. The overall research design will examine the relationships of pedagogical and collaborative techniques to learner outcomes and collective action. Many of these lessons are likely relevant to other collaborative informal science learning contexts. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Marc Stern Lara Hansen
resource project Media and Technology
Worldwide, four million people participate in geocaching--a game of discovering hidden treasures with GPS-enabled devices (including smart phones). Geocachers span all ages and tend to be interested in technology and the outdoors. To share information about the Montana Climate Assessment (MCA), an NSF-funded scientific report, Montana State University created a custom trackable geocaching coin featuring the MCA Website and logo. We then recruited volunteers to hide one coin in each of Montana’s 56 counties. Volunteer geocachers enthusiastically adopted all 56 counties, wrote blogs and social media posts about the coins, and engaged local Scout troops and schools. Other geocachers then found and circulated the coins while learning about Montana’s climate. One coin has traveled nearly 4,000 miles; several have visited other states and Canada. 95% of the volunteers said the project made them feel more connected to university research, and they told an average of seven other people about the project. Nearly all of the participants were unfamiliar with the Montana Climate Assessment prior to participating. The geocaching educational outreach project included several partnerships, including with Geocaching Headquarters in Seattle (a.k.a. “Groundspeak”); Cache Advance, Inc., an environmentally friendly outdoor gear company; and Gallatin Valley Geocachers. An advisory board of geocachers helped launch the project.
DATE:
TEAM MEMBERS: Suzi Taylor Ray Callaway M.J. Nehasil Cathy Whitlock
resource project Public Programs
Northern ecosystems are rapidly changing; so too are the learning and information needs of Arctic and sub-Arctic communities who depend on these ecosystems for wild harvested foods. Public Participation in Scientific Research (PPSR) presents a possible method to increase flow of scientific and local knowledge, enhance STEM-based problem solving skills, and co-create new knowledge about phenology at local and regional or larger scales. However, there remain some key challenges that the field of PPSR research must address to achieve this goal. The proposed research will make substantial contributions to two of these issues by: 1) advancing theory on the interactions between PPSR and resilience in social-ecological systems, and 2) advancing our understanding of strategies to increase the engagement of youth and adults historically underrepresented in STEM, including Alaska Native and indigenous youth and their families who play an essential role in the sustainability of environmental monitoring in the high latitudes and rural locations throughout the globe. In particular, our project results will assist practitioners in choosing and investing in design elements of PPSR projects to better navigate the trade-offs between large-scale scientific outcomes and local cultural relevance. The data collected across the citizen science network will also advance scientific knowledge on the effects of phenological changes on berry availability to people and other animals.

The Arctic Harvest research goals are to 1) critically examine the relationship between PPSR learning outcomes in informal science environments and attributes of social-ecological resilience and 2) assess the impact of two program design elements (level of support and interaction with mentors and scientists, and an innovative story-based delivery method) on the engagement of underserved audiences. In partnership with afterschool clubs in urban and rural Alaska, we will assess the impact of participation in Winterberry, a new PPSR project that investigates the effect of changes in the timing of the seasons on subsistence berry resources. We propose to investigate individual and community-level learning outcomes expected to influence the ability for communities to adapt to climate change impacts, including attributes of engagement, higher-order thinking skills, and their influence on the level of civic action and interest in berry resource stewardship by the youth groups. Using both quantitative and qualitative approaches, we compare these outcomes with the same citizen science program delivered through two alternate methods: 1) a highly supported delivery method with increased in-person interaction with program mentors and scientists, and 2) an innovative method that weaves in storytelling based on elder experiences, youth observations, and citizen science data at all stages of the program learning cycle. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project also has support from the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Katie Spellman Elena Sparrow Christa Mulder Deb Jones
resource project Media and Technology
This documentary film series and community story project aims to raise awareness of the critical role of trees for all life on Earth and to spark interest in getting involved with trees at the local level. Trees are threatened by climate disruption and deforestation, and yet at the same time are essential to efforts to mitigate and adapt to climate change. Many citizen groups are involved with planting and care of trees. Collaboration with these groups at the national and community level offers a practical, action-oriented opportunity to mobilize networks of citizens already interested in and identified with trees in the effort to raise broader awareness of the subject. Project deliverables include a 3-part PBS documentary series, a multimedia story project in collaboration with several of these citizen groups; a website and social media; and informational materials to support broadcast meteorologists in reporting about tree science in the context of current weather/changing climate. The project is projected to reach at least 15 million Americans during the grant period and many more during the 10-year project lifespan of the films. Principal public audiences include PBS viewers and citizen foresters. The professional audience is broadcast meteorologists. Partners include the U.S. Forest Service, National Environmental Education Foundation, and Alliance for Community Trees. This is a new model of local/national collaborative storytelling and community engagement designed to increase knowledge, awareness, and interest in tree biology and forest ecology.
DATE: -
TEAM MEMBERS: Wendy Pollock Ross Spears Carey Tisdal
resource project Public Programs
This planning grant deals with helping people in a flood prone area, Lehigh Valley, understand climate change and the impacts it can have on their livelihood. Through a series of town hall type meetings and distributed materials, the Nurture Nature Foundation and scientists will provide perspective on climate change and options now available to them. The target audience will range from teenagers to adults. During these discussions STEM concepts shall be integrated into the materials. An important aspect of this planning project is devising strategies for interactions with the local groups in meetings and for effective displays and exhibits that not only address the flooding/climate change issues but also reflect the STEM principles and concepts that are involved.
DATE: -
TEAM MEMBERS: Catherine Brandes