Skip to main content

Community Repository Search Results

resource project Media and Technology
Twin Cities PBS BRAINedu: A Window into the Brain/Una ventana al cerebro, is a national English/Spanish informal education project providing culturally competent programming and media resources about the brain’s structure and function to Hispanic middle school students and their families. The project responds to the need to eliminate proven barriers to Hispanic students’ STEM/neuroscience education, increase Hispanic participation in neuroscience and mental health careers and increase Hispanic utilization of mental health resources.

The program’s goals are to engage Hispanic learners and families by


empowering informalSTEM educators to provide culturally competent activities about the brain’s structure and function;
demonstrating neuroscience and mental health career options; and
reducing mental health stigma, thus increasing help-seeking behavior.


The hypothesis underpinning BRAINedu’s four-year project plan is that participating Hispanic youth and families will be able to explain how the brain works and describe specific brain disorders; demonstrate a higher level of interest of neuroscience and mental health careers and be more willing to openly discuss and seek support for brain disorders and mental health conditions.

To achieve program goals, Twin Cities PBS (TPT) will leverage existing partnerships with Hispanic-serving youth educational organizations to provide culturally competent learning opportunities about brain health to Hispanic students and families. TPT will partner with neuroscience and mental health professionals, cultural competency experts and Hispanic-serving informal STEM educators to complete the following objectives:


Develop bilingual educational resources for multigenerational audiences;
Provide professional development around neuroscience education to informal educators, empowering them to implement programming with Hispanic youth and families, and
Develop role model video profiles of Hispanic neuroscience professionals, and help partner organizations produce autobiographical student videos.


We will employ rigorous evaluation strategies to measure the project’s impact on Hispanic participants: a) understanding of neuroscience and brain health, particularly around disorders that disproportionately affect the Hispanic community; b) motivation to pursue neuroscience or mental health career paths; and c) mental health literacy and help-seeking behavior. The project will directly reach 72 Hispanic-serving informal STEM educators and public health professionals, and 200 children and 400 parents in underserved urban, suburban and rural communities nationwide.
DATE: -
TEAM MEMBERS: Rita Karl
resource project Professional Development, Conferences, and Networks
This project in the Advancing Informal STEM (Science, Technology, Engineering and Mathematics) Learning program's Innovations in Development track aims to build professional capacity in Informal Science Education (ISE) institutions for effective engagement of Latinx audiences. A collaboration between The Exploratorium and the Children's Discovery Museum (CDM) of San Jose, Cambio is a professional development project based on the premise that developing cultural competence specific to Latinx communities and STEM learning, together with organizational change capacity, will enable ISE institutions to improve their ability to be inclusive of Latinx communities, cultures, and audiences. Cambio's ultimate aim is to broaden participation in STEM by building the ISE field's capacity to effectively engage Latinxs in informal STEM learning. ISE institutions and other out-of-school programs and organizations have an important role to play in inspiring and preparing the next generation of Latinx STEM students, employees, and educators. Cambio participants will deepen their engagement with the research and practice relevant to this role and build an understanding of what broadening Latinx engagement can and should look like in their institutions. Working with expert instructors and coaches, and together as peers, Cambio participants will apply what they learn to real-world strategic initiatives they implement at their home institutions.

The heart of the Cambio project is the creation of a professional development (PD) model for ISE institutions and their staff that synthesizes: (a) current knowledge about strategies for Latinx engagement in informal STEM learning; (b) previous NSF-funded projects that leveraged that knowledge to chart a way forward for the field; and (c) CDM's Cultural Competence Learning Institute professional development program for building cultural competence, inclusion, and organizational change in museums. This synthesis will form a robust professional development platform that has the potential to create a field-wide shift in the way informal science institutions approach working with Latinx audiences. The Cambio professional development program will include: a new professional development framework and curriculum that will reach 54 practitioners in 15 institutions; the development and dissemination of professional development tools and resources for use by ISE practitioners; a Community of Practice focused on Latinx engagement in informal STEM learning; evidence of the efficacy of the Cambio PD model; and knowledge generated by formative and summative evaluation that will inform other ISE efforts focused on increasing the participation of Latinxs in STEM. A STEM focus will be woven throughout the professional development experience that focuses explicitly on areas of intersection between Latinx culture and identities and STEM. Practitioners will increase their expertise in designing experiences that will invoke emotional engagement, spark curiosity and excitement, in ways that explicitly value Latinx identities.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
resource research Media and Technology
SciGirls CONNECT 2 is a three-year NSF project that examines how the gender equitable and culturally responsive strategies currently employed in the SciGirls informal STEM educational program influences middle school girls’ STEM identity formation.
DATE:
TEAM MEMBERS: Rita Karl Alicia Santiago Karen Peterson Roxanne Hughes
resource research Public Programs
This poster was presented at the 2019 NSF AISL Principal Investigators meeting. The poster describes the Rural Activation and Innovation Network, in which four Arizona regions were selected for their uniqueness in geography and demographics to provide insights about barriers and solutions to implementing ISE experiences in rural communities.
DATE:
TEAM MEMBERS: Jeremy Babendure
resource project Professional Development, Conferences, and Networks
This project supports the Broader Impacts and Outreach Network for Institutional Collaboration (BIONIC), a national Research Coordination Network of Broader Impacts to support professionals who assist researchers to design, implement, and evaluate the Broader Impacts activities for NSF proposals and awards. All NSF proposals are evaluated not only on the Intellectual Merit of the proposed research, but also on the Broader Impacts of the proposed work, such as societal relevance, educational outreach, and community engagement. Many institutions have begun employing Broader Impacts support professionals, but in most cases, these individuals have not worked as a group to identify and share best practices. As a consequence, there has been much duplication of effort. Through coordination, BIONIC is expected to improve efficiency, reduce redundancy, and have significant impact in several areas: 1) Researchers will benefit from an increased understanding of the Broader Impacts merit review criterion and increased access to collaborators who can help them design, implement, and evaluate their Broader Impacts activities; 2) Institutions and research centers will increase their capacity to support Broader Impacts via mentoring for Broader Impacts professionals and consulting on how to build Broader Impacts support infrastructure, with attention to inclusion of non-research-intensive universities, Historically Black Colleges and Universities, and Hispanic- and Minority-Serving Institutions that may not have the resources to support an institutional Broader Impacts office; and 3) NSF, itself, will benefit from a systematic and consistent approach to Broader Impacts that will lead to better fulfillment of the Broader Impacts criterion by researchers, better evaluation of Broader Impacts activities by reviewers and program officers, and a system for evaluating the effectiveness of Broader Impacts activities in the aggregate, as mandated by Congress and the National Science Board. Through its many planned activities, BIONIC will ultimately help advance the societal aims that the Broader Impacts merit review criterion was meant to achieve.

The main goals of the project will be accomplished through the four specific objectives: 1) Identify and curate promising models, practices, and evaluation methods for the Broader Impacts community; 2) Expand engagement in, and support the development of, high-quality Broader Impacts activities by educating current and future faculty and researchers on effective practices; 3) Develop the human resources necessary for sustained growth and increased diversity of the Broader Impacts community; and 4) Promote cross-institutional collaboration and dissemination for Broader Impacts programs, practices, models, materials, and resources. BIONIC will facilitate collaborative Broader Impacts work across institutions, help leverage previously developed resources, support professional development, and train new colleagues to enter into the Broader Impacts field. This project will improve the quality and sustainability of Broader Impacts investments, as researchers continue to create unique and effective activities that are curated and broadly disseminated. BIONIC will create a network designed to assist NSF-funded researchers at their institutions in achieving the goals of the Broader Impacts Review Criterion. In so doing, BIONIC will promote Broader Impacts activities locally, nationally, and internationally and help to advance the Broader Impacts field.

This award is co-funded by the Divisions of Molecular and Cellular Biosciences and Emerging Frontiers in the Directorate for Biological Sciences and by the Division of Chemistry in the Directorate for Mathematics and Physical Sciences.
DATE: -
resource project Public Programs
This award was provided as part of NSF's Social, Behavioral and Economic Sciences Postdoctoral Research Fellowships (SPRF) program and is supported by SBE's Developmental Sciences program and the Directorate for Education and Human Resources' (EHR) Advancing Informal STEM Learning program. The goal of the SPRF program is to prepare promising, early career doctoral-level scientists for scientific careers in academia, industry or private sector, and government. SPRF awards involve two years of training under the sponsorship of established scientists and encourage Postdoctoral Fellows to perform independent research. NSF seeks to promote the participation of scientists from all segments of the scientific community, including those from underrepresented groups, in its research programs and activities; the postdoctoral period is considered to be an important level of professional development in attaining this goal. Each Postdoctoral Fellow must address important scientific questions that advance their respective disciplinary fields. Under the sponsorship of Dr. Sandra D. Simpkins at the University of California, Irvine, this postdoctoral fellowship award supports an early career scientist exploring high-quality and culturally responsive, math afterschool program (ASP) practices for under-represented minority (URM) youth. Mathematical proficiency is the foundation of youth's STEM pursuits. Yet today, far too many youth do not pursue STEM based on a perception that they are "not good at math". Students need to engage in contexts that spark their interest and their continued mastery and growth. ASPs are settings for such dynamic opportunities, particularly for URM students such as Latinos who attend lower quality schools and do not feel supported. In college, URM students often struggle with uninspiring and culturally incongruent STEM learning environments. The intergenerational nature of university-based STEM ASPs, whereby younger students are paired with undergraduate (UG) mentors, are opportunities to support both K-12 and UG students' motivational beliefs in math and STEM more broadly. This project will examine these intergenerational developmental processes in the context of a math enrichment ASP located at a Hispanic-Serving Institution. By studying how ASPs can serve as an important lever for promoting URM students' access and success in STEM, this project seeks to meaningfully inform efforts to broaden the participation of underrepresented groups in these fields.

This project seeks to understand how participating in a math enrichment ASP supports both youth participants' and UG mentors' motivational beliefs in math; to describe high-quality and culturally responsive practices; and to understand how to support the effectiveness of youth-staff relationships. To accomplish these research objectives, data will be collected from both youth participants and UG mentors through multiple methods including surveys, in-depth interviews, participant-observations, and video observations of youth-staff interactions. This project will add to our understanding of university-ASP partnerships. Further, the knowledge gained from this study will impact the larger landscape of practice and research on STEM ASPs by 1) addressing critical gaps in the current literature on high-quality and culturally responsive STEM ASP practices and 2) informing ASP staff development training. Overall, this mixed methods project will provide critical and rich information on the ways that ASPs can effectively deliver on its promise of promoting positive development for all youth, especially URM youth who may need and benefit from these spaces the most. The invaluable insight garnered from this study will be disseminated to traditional academic audiences to advance knowledge, as well as to local, state, and national organizations to inform the larger landscape of practice in STEM ASPs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Mark Vincent Yu Sandra Simpkins
resource project Professional Development, Conferences, and Networks
The goal of FLIP (Diversifying Future Leadership in the Professoriate), an NSF INCLUDES Design and Development Launch Pilot, is to address the broadening participation challenge of increasing the diversity of the future leadership in the professoriate in computing at research universities as a way to achieve diversity across the field. According to the 2016 CRA Taulbee Survey, only 4.3% of the tenure-track faculty at PhD-granting universities are from underrepresented minorities. This challenge is important to address because diverse faculty contributes to academia in the following critical ways: serve as excellent role models for a diverse study body, bring diverse backgrounds to the student programs and policies developed by the department, and bring diverse perspectives to the research projects and programs. Further, the focus is on research universities, because in practice, key national leadership roles, such as serving on national committees that impact thefield of computing, often come from research universities.

The shared purpose and broad vision of the FLIP launch pilot is to increase faculty diversity in computing at research universities by increasing the diversity of PhD graduates from the top producers of computing faculty. The focus is on four underrepresented groups in computing: African Americans; Hispanics; Native Americans and indigenous peoples; and Persons with Disabilities. The long-term goal is to pursue this vision through strategic partnerships with those institutions that are the top producers of computing faculty and organizations that focus on diverse students in STEM, as well as partnerships that collectively adopt proven strategies for recruiting, graduating, and preparing a diverse set of doctoral students for academic careers. The purpose of the pilot is to establish a unified approach across the different partners that will build upon proven strategies to develop novel practices for increasing the diversity of the PhD graduates from key institutions, thereby increasing the faculty diversity in computing at research universities. For the pilot, FLIP will focus on recruitment and admissions and professional development for current PhD students.
DATE: -
TEAM MEMBERS: Valerie Taylor Charles Isbell Jeffrey Forbes University of Chicago
resource project Media and Technology
The achievement gap begins well before children enter kindergarten. Research has shown that children who start school having missed critical early learning opportunities are already at risk for academic failure. This project seeks to narrow this gap by finding new avenues for bringing early science experiences to preschool children (ages 3-5), particularly those living in communities with few resources. Bringing together media specialists, learning researchers, and two proven home visiting organizations to collaboratively develop and investigate a new model that engages families in science exploration through joint media engagement and home visiting programs. The project will leverage the popularity and success of the NSF-funded PEEP and the Big Wide World/El Mundo Divertido de PEEP to engage both parents and preschool children with science.

To address the key goal of engaging families in science exploration through joint media engagement and home visiting programs, the team will use a Design Based Implementation Research (DBIR) approach to address the research questions by iteratively studying the intervention model (the materials and implementation process) and assessing the impact of the intervention model on parents/caregivers. The intervention model will include the PEEP Family Engagement Toolkit that will support 20 weeks of family science investigations using new digital and hands-on science learning resources. It will also include new professional development resources for home educators as well as and the implementation process and strategies for developing and implementing the Toolkit with families.

The proposed research focuses first on refining and improving program design and implementation, and second, on investigating whether the intervention improves the capacity of parent/caregivers to support young children's learning in science. Ultimately this research will accomplish two important aims: it will inform the design of the PEEP family engagement intervention model, and, more broadly, it will build practical and theoretical understanding of: 1) effective family engagement models in science learning; 2) the types of supports that families and home educators need to implement these models; and 3) how to implement these models across different home visiting programs. Given the reach of the home visiting programs and the increasing interest in supporting early science learning the potential for broad impact is significant. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Sonja Latimore Marisa Wolsky Megan Silander Borgna Brunner
resource project Media and Technology
Currently, many young people - especially girls and youth of color - lose confidence and interest in science, technology, engineering and math (STEM) pathways due to a perceived disconnect between their own identity and STEM fields. To address this challenge, Twin Cities PBS (TPT) is implementing SciGirls CONNECT2. This three-year Research in Service to Practice award examines how gender equitable and culturally responsive teaching strategies influence middle school girls' confidence, interest and motivation around STEM studies, and their choices around STEM careers. A set of research-based strategies, called the SciGirls Seven, are currently employed in SciGirls, an NSF-funded informal STEM educational outreach program serving 125+ educational partner organizations nationwide. The goal is to update and enrich the SciGirls Seven, providing educators with a critical, current, and more effective resource to motivate girls in STEM studies and careers. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

Florida State University will conduct a formal research study investigating the hypothesis that STEM programs that use gender equitable and culturally responsive strategies contribute to girls' positive STEM identity development, including their sense of self-efficacy, persistence and aspirations around future STEM careers. This research will include a literature review and a study of girls' STEM identity creation. The mixed methods study will include quantitative and qualitative data collection and analysis measuring changes in students' STEM identity and teachers' confidence in STEM teaching. The quantitative data will come from the student, parent and teacher pre/post surveys. The qualitative research will be conducted via case studies at four sites and the qualitative data will include observations, focus groups and interviews. Girls at all partner sites will create videos that will allow the research team to gather additional insight. The independent firm Knight Williams, Inc. will conduct the project's external evaluation.

The project will work with a subset of 16 current SciGirls partners. These geographically diverse partners will reach youth in all-girls and co-ed informal STEM education programs in a variety of settings. More than half serve Hispanic or other minority populations. The updated strategies will be disseminated to the 2,500 educators within the SciGirls partner network and the 18,800 STEM education organizations of the National Girls Collaborative Project (NGCP) network. Dissemination of the strategies and literature review will focus on the informal STEM education field through publications and presentations, posts at PBS LearningMedia, a free online space reaching 1.5 million teachers and educators.
DATE: -
TEAM MEMBERS: Rita Karl Karen Peterson Roxanne Hughes Alicia Santiago
resource project Media and Technology
This project had three objectives to build knowledge with respect to advancing Informal STEM Education:


Plan, prototype, fabricate, and document a game-linked design-and-play STEM exhibit for multi-generational adult-child interaction utilizing an iterative exhibit design approach based on research and best practices in the field;
Develop and disseminate resources and models for collaborative play-based exhibits to the informal STEM learning community of practice of small and mid-size museums including an interactive, tangible tabletop design-and-play game and a related tablet-based game app for skateboarding science and technology design practice;
Conduct research on linkages between adult-child interactions and game-connected play with models in informal STEM learning environments.


Linked to these objectives were three project goals:


Develop tools to enable children ages 5-8 to collaboratively refine and test their own theories about motion by exploring fundamental science concepts in linked game and physical-object design challenge which integrates science (Newton’s Laws of Motion) with engineering (iterative design and testing), technology (computational models), and mathematics (predictions and comparisons of speed, distance, and height). [Linked to Objectives 1 & 3]
Advance the informal STEM education field’s understanding of design frameworks that integrate game environments and physical exhibit elements using tangibles and playful computational modeling and build upon the “Dimensions of Success” established STEM evaluation models. [Linked to Objectives 1 & 2]
Examine methods to strengthen collaborative learning within diverse families through opportunities to engage in STEM problem-based inquiry and examine how advance training for parents influences the extent of STEM content in conversations and the quality of interactions between caregivers and children in the museum setting. [Linked to Objectives 1 & 3]


The exhibit designed and created as a result of this grant project integrates skateboarding and STEM in an engaging context for youth ages 5 to 8 to learn about Newton’s Laws of Motion and connect traditionally underserved youth from rural and minority areas through comprehensive outreach. The exhibit design process drew upon research in the learning sciences and game design, science inquiry and exhibit design, and child development scholarship on engagement and interaction in adult-child dyads.

Overall, the project "Understanding Physics through Collaborative Design and Play: Integrating Skateboarding with STEM in a Digital and Physical Game-Based Children’s Museum Exhibit" accomplished three primary goals. First, we planned, prototyped, fabricated, and evaluated a game-linked design-and-play STEM gallery presented as a skatepark with related exhibits for adult-child interaction in a Children's Museum.

Second, we engaged in a range of community outreach and engagement activities for children traditionally underserved in Museums. We developed and disseminated resources for children to learn about the physics of the skatepark exhibit without visiting the Museum physically. For example, balance board activities were made portable, the skatepark video game was produced in app and web access formats, and ramps were created from block sets brought to off-site locations.

Third, we conducted a range of research to better understand adult-child interactions in the skatepark exhibit in the Children's Museum and to explore learning of physics concepts during physical and digital play. Our research findings collectively provide a new model for Children's Museum exhibit developers and the informal STEM education community to intentionally design, evaluate, and revise exhibit set-up, materials, and outcomes using a tool called "Dimensions of Success (DOS) for Children's Museum Exhibits." Research also produced a tool for monitoring the movement of children and families in Museum exhibit space, including time on task with exhibits, group constellation, transition time, and time in gallery. Several studies about adult-child interactions during digital STEM and traditional pretend play in the Museum produced findings about social positioning, interaction style, role, and affect during play.
DATE: -
TEAM MEMBERS: Deb Dunkhase Kristen Missall Benjamin DeVane