Skip to main content

Community Repository Search Results

resource research Media and Technology
Educational programming on digital video platforms such as YouTube wrestle with gender disparities in viewership. When men engage with science and technology content on digital platforms more than women, gender gaps in the understanding of, engagement with, and interest in STEM may intensify. Therefore, there is a critical need for more research aiming to aid in our understanding of these gender differences. This study provides evidence that the gender gaps may exist not in the use of YouTube itself, but with the engagement with science and technology content on the platform. Furthermore
DATE:
TEAM MEMBERS: Asheley Landrum
resource research Media and Technology
KQED’s science engagement team is on the front lines of making sure our overall science content, which includes science news and our Deep Look videos, are shared and engaged with on our various social media platforms. One of the platforms we use daily to disseminate our science content is Facebook. To better understand the success of our efforts beyond the usual metrics we track, the science engagement team tested a few Deep Look grant-related research questions using Facebook as a parallel research tool to our grant’s more traditional survey related research. More specifically, Facebook’s
DATE:
TEAM MEMBERS: Sue Ellen McCann Sevda Eris Asheley Landrum Sarah Mohamad
resource research Media and Technology
Science writers, science producers, and science engagement specialists from KQED Science Deep Look joined a team of researchers from the University of Connecticut, Missouri State University, and Texas Tech University to focus on women’s preferences and identities as related to their science engagement intentions. Findings from this most recent study of the gender disparity in Deep Look viewership suggests that one key piece of the puzzle is related to women’s preferences for images and another key piece of the puzzle is related to the identities that women report as most important to them.
DATE:
TEAM MEMBERS: Sue Ellen McCann Sevda Eris Asheley Landrum Sarah Mohamad Jocelyn Steinke Christine Gilbert Kelsi Opat
resource research Media and Technology
The KQED science digital media team continue their research on gender disparity of their YouTube series Deep Look. Can videos with titles that pertained to health/home and sex/mating, on average, attach a higher proportion of female viewers?
DATE:
TEAM MEMBERS: Sue Ellen McCann Sevda Eris Asheley Landrum Sarah Mohamad Othello Richards Kristina Janét Kelsi Opat Sarah Mohamad Gabriela Quiros
resource research Media and Technology
The KQED science digital video team continue their study of gender disparity in viewership for the YouTube series Deep Look. Below is a summary of the study’s key findings and you can read the complete study attached below. 1. Science curiosity is a key motivator of viewing Deep Look videos; science comprehension is not. You don’t need a Ph.D. in chemistry, just a dash of curiosity to have a look at, and maybe even get hooked on, science videos. 2. Diverging from previous findings — and researchers’ expectations — the gender disparity previously found in Deep Look viewership was not
DATE:
TEAM MEMBERS: Sue Ellen McCann Sevda Eris Asheley Landrum Sarah Mohamad Daniel Chapman Natasha Strydhorst
resource project Informal/Formal Connections
This Innovations in Development project aims to foster the development of STEM identity among a diverse group of middle school students and, in turn, motivate them to pursue in STEM interests and careers. Vegas STEM Lab, led by a team of investigators from the University of Nevada, Las Vegas, will employ a mix of online and on-site activities to introduce students to engineering methods in the context of the entertainment and hospitality (E&H) industry that is the lifeblood of Las Vegas. Investigators will collaborate with local resorts, multimedia designers, and arts institutions to offer field experiences for students to interview, interact with, and learn from local experts. The Lab will help youth overcome prevailing beliefs of STEM as boring and difficult, boost their confidence as STEM-capable individuals, and expose them to the exciting STEM careers available in their hometown. UNLV engineering undergrads will serve as near-peer mentors to the middle school students, guiding them through Lab activities and acting as role models. Investigators will measure student learning and engagement over the course of the Vegas STEM Lab experience with the aim of understanding how the Lab model—with its rich set of activities and interpersonal interactions set in the local E&H industry—can cultivate STEM identity development and encourage students to pursue STEM pathways. Despite the project’s hyperlocal focus on the Las Vegas community, if successful, other cities and towns may learn from and adapt the Lab model for use in their youth development programs.

Vegas STEM Lab will provide online materials for students’ STEM learning during the academic year followed by on-site visits and hands-on project development during a three-week summer experience. The Lab will run for three years with cohorts of 40 students each (N=120) with the aim of iteratively improving its activities and outcomes from year to year. The local school district will help recruit middle school students who have demonstrated low interest in STEM to participate in the Lab, ensuring that participants reflect the demographic makeup of the Las Vegas community in terms of race and ethnicity, socio-economic status, and gender. Summer activities will take students behind the scenes of the city’s major E&H venues; investigate the workings of large-scale displays, light shows, and “smart hospitality” systems; and then build their own smaller scale engineering projects. Investigators will employ the Dynamic Systems Model of Role Identity (DSMRI) framework to study how intentionally designed Lab experiences shape students’ understanding of themselves, their future aspirations, and their grasp of the scientific enterprise. Summer activities will be integrated into the online learning platform at the end of each year of Vegas STEM Lab, and in the final year of the project, workshops will train local educators to use the platform in either formal or informal learning settings. Materials and research findings produced through this work will be disseminated to middle school teachers and afterschool care providers, and shared with researchers through academic publications and conferences.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Emma Regentova Venkatesan Muthukumar Jonathan Hilpert Si Jung Kim
resource project Media and Technology
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.

Increasing greater diversity, equity, and inclusion in science not only presents a social justice goal, but is also vital to the financial and social success of the nation. The stereotype of the older white male scientist has obscured the contributions of women and people of color. This project seeks to remedy these perceptions which are barriers to entry into STEM fields. The project will create a large-scale hub for STEM themed video content on YouTube and other social media platforms, featuring 100+ original STEM videos produced by PBS partners. This hub and accompanying research seeks to identify the characteristics of online STEM content that attract (or fail to attract) underrepresented groups, specifically Black and Hispanic communities as well as women of all races. The objectives of this project are to 1) provide a unified online science-themed hub, PBS Terra, on YouTube and other platforms for hosting, sharing, and distributing digital STEM series from diverse producers from across the PBS system; 2) conduct surveys and focus groups to examine and understand the needs and expectations of women, Black and Hispanic communities and their consumption of STEM video content online and 3) test hypotheses about the communicative strategies of STEM videos that feature Black and Hispanic female scientists. Project collaborators include PBS, researchers at the University of Utah and the University of Georgia, and consultants and advisors with expertise in broadening participation and inclusion in STEM.

Little is known about how or why adult Americans seek science content on YouTube, especially the motivations of adults from underrepresented minorities and females. The key research questions in this project are: 1) Why do Black and Hispanic audiences and women of all races seek science video content online? 2) How does showing Black and Hispanic female scientists in science video content on YouTube impact viewers’ identification with and sense of belonging in STEM? 3) How does the use of humor by Black and Hispanic scientists in YouTube science content affect viewers’ perceptions of the communicator and their engagement with STEM content? 4) How does the appearance and manner of dress of Black and Hispanic scientists in YouTube science content affect viewers’ perceptions in the aforementioned areas? A nationally representative baseline survey will be conducted. A probability sample of 2000 respondents will be obtained including oversampling of Black and Hispanic audiences. To complement findings from the survey, focus groups will be conducted in eight different regions of the country to learn why these targeted audiences do or do not seek science content on YouTube and what motivates them to share the content with their social media network. In addition, an experiment embedded in an online survey will test the hypothesis that greater on-screen representation of women and scientists of color will broaden existing perceptions about scientists. The experiment will consist of a 3 (scientist’s race: Black/Hispanic/White) × 2 (science issue: controversial/non-controversial) × 2 (style: casual/professional) between-subjects design. Survey participants will be randomly assigned to the experimental conditions. These factors (science issue and host appearance) can be altered by content producers to better reach and engage the targeted audiences. The project not only investigates theoretical questions at the intersection of STEM stereotypes and race, but findings related to these experimental conditions will offer practical insight into strategies that can be used by science communication practitioners.
DATE: -
TEAM MEMBERS: Adam Dylewski Sara Yeo Michael Cacciatore
resource research Media and Technology
On October 1, 2015, Oregon Public Broadcasting (OPB) was awarded a 3‑year grant of 2.7 million dollars from the National Science Foundation (NSF) to fund the project Hacking Your Mind (award number 1515520). A major public and social media project, Hacking Your Mind (HYM) planned to engage Americans with the new discoveries being made in the social, behavioral, and economic sciences and the remarkable insights these discoveries offer into how individuals make numerous daily decisions and judgments, as well as the broader impact of this highly personal phenomenon on nearly every aspect of
DATE:
TEAM MEMBERS: Chandra Lewis Jean Hiebert Larson Caroline Qureshi
resource project Media and Technology
This award takes an innovative approach to an ongoing, pervasive, and persistent societal issue: women are still drastically underrepresented in computing careers. This project targets middle school-aged girls because it is a time when many of them lose interest and confidence in pursuing technical education and computing careers. This project will design, develop, and deploy a one-week experience focused on middle school girls that targets this issue with a novel combination of teaching techniques and technology. The project will use wearable computing devices to support girls' social interactions as they learn computing and solve technical challenges together. The goals of the project are to raise interest, perceived competence, and involvement in the computational ability of girls. Additionally, the project aims to increase a sense of computational community for girls that makes pursuing computational skills more relevant to their identities and lives, and that helps continued participation in computing. The project will deploy a one-week experience four times per year with a socioeconomically diverse range of campers. The project will also develop a 'program in a box' kit that can be broadly used by others wishing to deliver a similar experience for girls.

The planned research will determine if a one-week experience that uses social wearable construction in the context of live-action role play can use the mediating process of computational community formation to positively impact middle school girls' engagement with and interest in computation. Computational community is defined as girls engaging together in the process of learning computation, trading resources and knowledge, and supporting growth. Research participants will include 100 6th to 9th-grade girls. At least 75% of the participants will be either low income, first-generation college-bound, or underrepresented in higher education. Students will be recruited through the longstanding partnerships with title one schools in the Salinas Valley, the Educational Partnership Center, and in the Pajaro Valley Unified School district, where 82% of the students are Hispanic/Latinx, 42% are English Learners, and 73% are eligible for free or reduced lunch. The research questions are: 1) Does the proposed experience increase girls' self-reported competence, self-efficacy, and interest in computational skills and careers? and 2) Will the proposed experience lead to activity-based evidence of learning and integration of computational skills at the group social level? The project will use a mixed-methods, design-based research approach which is an iterative design process to rapidly collect and analyze data, and regularly discuss the implications for practice with the design team. Data will be collected using observations, interviews, focus groups, surveys, and staff logs. Quantitative data will be analyzed using frequencies, means, and measures of dispersion will be applied to survey data from both time points. Pearson correlation coefficients will be used to describe the bivariate relationship between continuous factors. ANOVAs will assess whether there are significant differences in continuous measures across groups. Qualitative data will be analyzed using a constant comparison method.

This Innovations in Development award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Katherine Isbister
resource project Media and Technology
This project aims to broaden participation in STEM education among underserved populations through innovative and inclusive approaches to technology education. The project is designed to enhance knowledge and comfort with technology and develop computational thinking among women who were formerly incarcerated and are now seeking to reenter the workforce or adjust to their lives outside the criminal justice system ("women in transition") in the Midwest. While women have become the fastest growing segment of the incarcerated population, prison education and reentry programs are not well prepared to respond to this influx. Women in transition are rarely exposed to STEM education and they are generally isolated from the digital world while in prison. Consequently, they face post-incarceration challenges in accessing and using rapidly changing digital technologies. Against this backdrop, this three-year technology education project will aim to help women in transition in Kansas and Missouri develop STEM skills relevant to job applications and post-incarceration adjustments. The project may serve as a template for building evidence-based workforce preparation efforts in informal settings, and the concurrent online peer networking and app development may also facilitate adaptation for and scaling to other regions and other similarly digitally disadvantaged populations. This project is funded by the AISL program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The project design is informed by the research team's past experiences offering technology education to women in transition and other underserved populations in the Midwest. The design includes three interrelated aspects: (1) technology education, (2) web/mobile app development, and (3) original empirical research. The research team will offer hybrid (online and offline) technology training programs to 300 women in transition in Kansas and Missouri. Learners will attend weekly face-to-face technology classes at different levels (introductory, intermediate, and advanced) at public libraries. A member-only online site and an accompanying mobile application for online tutorials and virtual meet-ups will enhance exposure to different types of technologies. Starting with interest-based technology topics including online resume building, information verification, and identity protection, the team will introduce women to deeper STEM topics including elementary coding skills and computational thinking. Empirical research will examine how different modalities of offering technology education are associated with learning outcomes for women participating in the program and the association of increasing knowledge and skills in digital technologies with self-efficacy, perceived social support, employment, and reduced recidivism.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Hyunjin Seo Hannah Britton Megha Ramaswamy Baek-Young Choi Sejun Song
resource project Media and Technology
Science television shows are an important source of informal learning and enrichment for preschool-aged children. However, one limitation of television programming is that it is largely a one-way, non-interactive medium. Research suggests that children learn best through active engagement with content, and that parents can make TV watching more interactive by co-viewing and talking with their children. However, many parents and other adults may lack the time or experience and comfort with science language and content to provide critcial just-in-time support for their children. This study seeks to take advantage of recent advances in artificial intelligence that now allow children to enjoyably interact with automated conversational agents. The research team will explore whether such conversational agents, embedded as an on-screen character in a science video, can meaningfully interact with children about the science content of the show by simulating the benefits of co-viewing with an adult. If successful, the project could lay the foundation for a new genre of science shows, helping transform video watching into more interactive and engaging learning experiences. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project will develop interactive videos incorporating a conversational agent in three 11-minute episodes of a future children's animated television program. The videos will enable children to speak with the main character of the show as the character solves everyday science mysteries, thus priming children to engage in observation, prediction, pattern finding, and problem solving through scaffolded conversation. This study will be carried out in two iterative cycles with the goal of developing and testing the embedded conversational function for each episode. In each cycle, the project team, which includes experts in children's TV production, as well as educational and HCI researchers will develop the storyboard and conversation prompts and follow-ups, create animated videos based on the revised script, and create a mobile application of the interactive video integrated with the conversational agent. Field testing with 10 children will be conducted to iteratively improve the embedded conversational function. In the pilot testing stage, a controlled study will be conducted with 30 children in each group (N=120): 1) watching the episode with the embedded conversational function; 2) watching the episode with a human partner carrying out the dialogue in the script rather than the virtual character; 3) watching the episode with pseudo-interaction, in which the animated character asks questions but does not attempt to understand or personally respond to children's answers; and 4) watching the episode with no dialogue. Data collected from the experiments will be used to examine whether and in what ways use of a conversational agent affects children's engagement, attention, communication strategies, perceptions, and science learning, and whether these effects vary by children's age, gender, socioeconomic status, language background, and oral language proficiency in English. The project will provide a comprehensive evaluation of the feasibility and potential of incorporating conversational agents into screen media to foster young children's STEM learning and engagement.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Mark Warschauer Daniel Whiteson Sara DeWitt Andres Bustamante Abby Jenkins
resource project Websites, Mobile Apps, and Online Media
The intent of this five-year project is to design, deliver, and study professional development for Informal Science Learning (ISL) educators in the arena of equity-focused STEAM (Science, Technology, Engineering, Art, and Mathematics) teaching and learning. While the strategy of integrating art and science to promote interest, identity, and other STEM-related learning has grown in recent years, this domain is still nascent with respect to a guiding set of best practices. Through prior work, the team has developed and implemented a set of design principles that incorporate effective practices for broadening participation of girls in science via science-art integration on the topic of the biology, chemistry and optics of "Colors in Nature." The continued initiative would impact the ISL field by providing a mechanism for ISL educators in museums, libraries and after-school programs to adopt and implement these STEAM design principles into their work. The team will lead long-term (12-18 months) professional development activities for ISL educators, including: 1) in-person workshops that leverage their four previously developed kits; 2) online, asynchronous learning activities featuring interactive instructional videos around their STEAM design principles; 3) synchronous sessions to debrief content and foster communities of practice; and 4) guided design work around the development or redesign of STEAM activities. In the first four years of the project, the team will work with four core institutional partners (Sitka Sound Science Center, Sno-Isle Libraries, the Fairbanks North Star Borough School District after-school program, and the Pima County Public Library system) across three states (Alaska, Washington, and Arizona). In the project's later stages, they will disseminate their learning tools to a broad, national audience. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The project has three main goals: (1) To support ISL educators in offering meaningful STEAM activities, (2) To create institutional change among the partner organizations, and (3) To advance the ISL field with respect to professional development and designing for STEAM Programming. The research questions associated with the professional development activities address the ways in which change occurs and focus on all three levels: individual, institutional, and the ISL field. The methods are qualitative and quantitative, including videotaped observations, pre and post interviews, surveys and analysis of online and offline artifacts. In addition, the project evaluation will assess the implementation of the project's professional development model for effectiveness. Methods will include observations, interviews, surveys and Website analytics and program data.
DATE: -
TEAM MEMBERS: Laura Conner Carrie Tzou Mareca Guthrie Stephen Pompea Blakely Tsurusaki Laura Oxtoby Perrin Teal-Sullivan