Skip to main content

Community Repository Search Results

resource research Media and Technology
Peer production projects involve people in many tasks, from editing articles to analyzing datasets. To facilitate mastery of these practices, projects offer a number of learning resources, ranging from project-defined FAQsto individually-oriented search tools and communal discussion boards. However, it is not clear which project resources best support participant learning, overall and at different stages of engagement. We draw on Sørensen's framework of forms of presence to distinguish three types of engagement with learning resources: authoritative, agent-centered and communal. We assigned
DATE:
TEAM MEMBERS: Corey Brian Jackson Carsten Osterlund Kevin Crowston Mahboobeh Harandi Laura Trouille
resource research Public Programs
While there is extensive evidence that STEM careers can be important pathways for augmenting social mobility and for increasing individual prestige, many youth perceive a STEM trajectory as an unattractive option. In the US, women and members of historically marginalized racial and ethnic groups, continue to be underrepresented across STEM disciplines. One vehicle for generating and sustaining interest in STEM is providing youth long-term access to informal science education (ISE) institutions. Here, we incorporate triangulation methods, collecting and synthesizing both qualitative and
DATE:
TEAM MEMBERS: Bobby Habig Preeti Gupta Brian Levine Jennifer Adams
resource research Exhibitions
This paper describes an NSF-funded study which explored the relationship between female-responsive exhibit designs and girls’ engagement. Across three participating science centers, 906 museum visitors ages 8 to 13 were observed at 334 interactive physics, math, engineering, and perception exhibits. We measured girls’ engagement based on whether they chose to use or return to the exhibits, opted to spend more time at them, or demonstrated deeper engagement behavior. Findings suggest that the design strategies identified in our previously developed Female-Responsive Design Framework can inform
DATE:
resource project Higher Education Programs
The Sustainability Teams Empower and Amplify Membership in STEM (S-TEAMS), an NSF INCLUDES Design and Development Launch Pilot project, will tackle the problem of persistent underrepresentation by low-income, minority, and women students in STEM disciplines and careers through transdisciplinary teamwork. As science is increasingly done in teams, collaborations bring diversity to research. Diverse interactions can support critical thinking, problem-solving, and is a priority among STEM disciplines. By exploring a set of individual contributors that can be effect change through collective impact, this project will explore alternative approaches to broadly enhance diversity in STEM, such as sense of community and perceived program benefit. The S-TEAMS project relies on the use of sustainability as the organizing frame for the deployment of learning communities (teams) that engage deeply with active learning. Studies on the issue of underrepresentation often cite a feeling of isolation and lack of academically supportive networks with other students like themselves as major reasons for a disinclination to pursue education and careers in STEM, even as the numbers of underrepresented groups are increasing in colleges and universities across the country. The growth of sustainability science provides an excellent opportunity to include students from underrepresented groups in supportive teams working together on problems that require expertise in multiple disciplines. Participating students will develop professional skills and strengthen STEM- and sustainability-specific skills through real-world experience in problem solving and team science. Ultimately this project is expected to help increase the number of qualified professionals in the field of sustainability and the number of minorities in the STEM professions.

While there is certainly a clear need to improve engagement and retention of underrepresented groups across the entire spectrum of STEM education - from K-12 through graduate education, and on through career choices - the explicit focus here is on the undergraduate piece of this critical issue. This approach to teamwork makes STEM socialization integral to the active learning process. Five-member transdisciplinary teams, from disciplines such as biology, chemistry, computer and information sciences, geography, geology, mathematics, physics, and sustainability science, will work together for ten weeks in summer 2018 on real-world projects with corporations, government organizations, and nongovernment organizations. Sustainability teams with low participation by underrepresented groups will be compared to those with high representation to gather insights regarding individual and collective engagement, productivity, and ongoing interest in STEM. Such insights will be used to scale up the effort through partnership with New Jersey Higher Education Partnership for Sustainability (NJHEPS).
DATE: -
TEAM MEMBERS: Amy Tuininga Ashwani Vasishth Pankaj Lai
resource project Resource Centers and Networks
Physical science and engineering remain the least diverse of all STEM fields---with regard to women, underrepresented minorities, and persons with disabilities---across all levels of STEM education and training. SCI-STEPS is an NSF INCLUDES Design and Development Launch Pilot that will address this persistent challenge by developing a complete end-to-end pipeline (or system of pathways) from the beginning of college to the PhD, and then into the workforce. Many isolated efforts to broaden participation have shown promise, but they have not produced big enough impact. SCI-STEPS represents a concerted set of coordinated interventions---consciously facilitated, systemically linked, and purposefully disseminated. SCI-STEPS represents a broad regional network among major research universities, Historically Black Colleges and Universities, comprehensive universities, community colleges, national labs, and major scientific organizations. The goal of the network is to ensure that underrepresented individuals in the physical sciences and engineering can get from their starting point in STEM higher education---freshmen at 2-year or 4-year college---through the higher education pathways leading to an appropriate terminal degree and employment in the STEM workforce.

Women, underrepresented minorities, and persons with disabilities collectively represent the majority of college-age individuals entering higher education with an expressed interest in physical science and engineering. A growing body of research indicates that academic and social integration may be even more influential than academic abilities for retention of students. Thus, interventions aimed at stemming the losses of these individuals must ultimately be aimed at changing the system---including unwelcoming institutional climates, racial/ethnic/gender stereotyping, a lack of mentors with whom to identify, and evaluation methods that emphasize conformity over individual capabilities---rather than changing the individual. The SCI-STEPS pilot focuses effort on institutional readiness for implementation of best practice interventions at four key junctures: (i) college freshman to sophomore; (ii) undergraduate to graduate; (iii) PhD to postdoc; and (iv) postdoc to workforce.The pilot will proceed in three steps: (1) a planning phase, (2) development of an initial end-to-end pathways model with four Juncture Transition teams, and (3) scale-up of the SCI-STEPS "network of networks" with all initial partners. By addressing these objectives through a collective impact framework and embedded research, this pilot will demonstrate how best-practice interventions at each pathway juncture can be dovetailed and scaled up across a broad range of institutional types and across a large but distinct geographical area. Addressing these objectives will thus also serve to advance Broadening Participation efforts at a national scale, by suggesting the forms of institutional partnerships and best-practices that may inform other alliances in other STEM disciplines and/or different regional areas.
DATE: -
TEAM MEMBERS: Keivan Stassun Nicole Joseph Kelly Holley-Bockelmann William Robinson Roger Chalkley
resource research Public Programs
This paper reflects on the evaluation of and findings from a nationwide programme of physics engagement activities hosted by 10 science centres across the UK. We discuss our findings indicating the affordances of the programme with reference to the wider literature in order to draw out elements of the project that may be useful for other science learning and engagement initiatives. In particular, we discuss findings that relate to contemporary research and policy interests around the engagement of girls in science, the key ages at which young people’s views may best be influenced, the
DATE:
TEAM MEMBERS: Heather King emily dawson Rodolfo Leyva
resource research Exhibitions
The Exhibit Designs for Girls’ Engagement (EDGE) project is a three-year Exploratorium-run, NSF-funded, research study aiming to identify the most important design attributes for engaging girls at STEM exhibits. We identified nearly 100 exhibit design attributes that had the potential for better engaging girls. To test those 100 attributes and their relationship to girls’ engagement, we studied more than 300 physics, engineering, math, and perception exhibits at the Exploratorium, the Science Museum of Minnesota, and the Arizona Science Center. The purpose of the EDGE research was to winnow
DATE:
resource research Informal/Formal Connections
This paper investigates the impact of stereotype threat on young women’s academic achievement in high school physics classes. Stereotype threat is the reinforcement of a negative stereotype. Results show that, although females underperformed when exposed to explicit and implicit stereotype threat conditions, their performance was identical to that of males when stereotypes were nullified.
DATE:
TEAM MEMBERS: Catarina Correia
resource project Public Programs
The University of Alaska Fairbanks will partner with the National Optical and Astronomy Observatory, the University of Alaska Museum of the North, and the University of Washington-Bothell to bring biomaterials, optics, photonics, and nanotechnology content, art infused experiences, and career awareness to art-interested girls. This full scale development project, Project STEAM, will explore the intersections between biology, physics, and art using advanced technologies at the nano to macro scale levels. Middle school girls from predominately underrepresented Alaskan Native, Native American (Tohono O'odham, Pascula Yaqui) and Hispanic groups, their families, teachers, and Girl Scout Troop Leaders in two site locations- Anchorage, Alaska and Tucson, Arizona will participate in the project. Centered on the theme "Colors of Nature," Project STEAM will engage girls in science activities designed to enhance STEM learning and visual-spatial skills. Using advanced technologies, approximately 240 girls enrolled in the Summer Academy over the project duration will work with women scientist mentors, teachers, and Girl Scout Troop Leaders to create artistic representations of natural objects observed at the nano and macro scale levels. Forty girls will participate in the Summer Academy in year one (20 girls per site- Alaska and Arizona). In consequent years, approximately180 girls will participate in the Academy (30 girls per site). Another 1,500 girls are expected to be reached through their Girl Scout Troop Leaders (n=15) who will be trained to deliver a modified version of the program using specialized curriculum kits. In addition, over 6,000 girls and their families are expected to attend Project STEAM Science Cafe events held at local informal science education institutions at each site during the academic year. In conjunction with the programmatic activities, a research investigation will be conducted to study the impact of the program on girls' science identity. Participant discourse, pre and post assessments, and observed engagement with the scientific and artistic ideas and tools presented will be examined and analyzed. A mixed methods approach will also be employed for the formative and summative evaluations, which will be conducted by The Goldstream Group. Ultimately, the project endeavors to increase STEM learning and interest through art, build capacity through professional development, advance the research base on girls' science identity and inspire and interest girls in STEM careers.
DATE: -
TEAM MEMBERS: Laura Conner Stephen Pompea Mareca Guthrie Carrie Tzou
resource research Public Programs
This study sought to understand what motivates students at the high school and early college level to choose physics. It explored students’ expectations of their study of physics and their priorities for future careers. The researchers intended to contribute strategies to increase the number of females who complete university physics degrees. They also hoped to show that a wider range of perspectives needs to be represented among physics practitioners.
DATE:
TEAM MEMBERS: Melissa Ballard
resource research Public Programs
This paper by Mujtaba and Reiss explores tendencies in girls’ and boys’ motivations, attitudes, and perceptions toward studying physics after age 16. Findings suggest that girls who want to continue studying physics understand the material and social benefits it affords. They are also more competitive than other students. However, in general, they have less confidence in their abilities than boys.
DATE:
TEAM MEMBERS: Heather King
resource research Exhibitions
The Exhibit Designs for Girls' Engagement (EDGE) PI poster provides the background for the research, the research questions, the steps we are taking to answer those questions, our audience and deliverables, and the challenges we've faced in the first year.
DATE:
TEAM MEMBERS: Exploratorium Toni Dancstep Veronica Garcia-Luis