Skip to main content

Community Repository Search Results

resource research Public Programs
This poster was presented at the 2021 NSF AISL Awardee Meeting. The project is building a nationwide online coaching/mentoring program for out of school educators in rural settings.
DATE:
TEAM MEMBERS: Perrin Chick Aimee Moody
resource research Public Programs
This poster was presented at the 2021 NSF AISL Awardee Meeting. The project scales up an award-winning coaching model: Informal educators come together in small groups to share videos of their own interactions with youth A coach helps them share feedback based on their use of key skills (e.g. how to ask youth purposeful questions).
DATE:
TEAM MEMBERS: Sue Allen Jessica Donner
resource project Media and Technology
This project will scale up fully virtual or face-to-face STEM professional development to afterschool educators in both urban and rural settings. Given that many afterschool educators have little or no background in STEM education, there is demand for professional development that is effective, inexpensive, and accessible. This project will build national capacity in STEM education by developing the STEM skills of over 1,500 educators across multiple states and will ultimately impact over 31,000 under-represented youth in these areas. The project will also deliver robust materials through a free open-source mechanism, for use by educators anywhere and anytime. The project will broaden participation in STEM by engaging community educators in the rural parts of the nation, a critically under-represented group in STEM. It will also reach educators from low-income urban communities across three states and seven cities, targeted through strategic networks and partnerships, including organizations such as the YMCA, 4-H, and the National Afterschool Association.

This collaborative project is scaling the ACRES model (Afterschool Coaching for Reflective Educators in STEM). The model humanizes the virtual experience, making it social and engaging, and allows educators to learn, share, and practice essential STEM facilitation skills with a focus on making STEM relevant and introducing STEM careers to youth. In addition to enhancing the professional STEM skills of rural and urban educators, the project will create a national cohort of coaches with deep expertise in (i) converting in-person activities for youth into a highly engaging, choice-rich online format, (ii) engaging isolated informal educators in supportive professional learning communities, and (iii) coaching foundational research-based STEM facilitation skills that ensure these activities are pedagogically sound. A key part of this broad implementation project involves studying how to integrate an effective professional development program into afterschool organizations, including the ways afterschool programs adapt the materials to be culturally responsive to their local communities. The researchers will also study factors contributing to the longer-term sustainability of the program. The research will use surveys, interviews, direct observations, and case studies of participants to provide the field with valuable insights into scaling a program in the afterschool world.

This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for extending access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
resource project Public Programs
The NIH Science Education Partnership Award (SEPA) program of Emory University endeavors to use an over-arching theme of citizen science principles to:


develop an innovative curriculum based on citizen science and experiential learning to evaluate the efficacy of informal science education in after-school settings;
promote biomedical scientific careers in under-represented groups targeting females for Girls for Science summer research experiences;
train teachers in Title I schools to implement this citizen science based curriculum; and
disseminate the citizen science principles through outreach.


This novel, experiential science and engineering program, termed Experiential Citizen Science Training for the Next Generation (ExCiTNG), encompasses community-identified topics reflecting NIH research priorities. The curriculum is mapped to Next Generation Science Standards.

A comprehensive evaluation plan accompanies each program component, composed of short- and/or longer-term outcome measures. We will use our existing outreach program (Students for Science) along with scientific community partnerships (Atlanta Science Festival) to implement key aspects of the program throughout the state of Georgia. These efforts will be overseen by a central Steering Committee composed of leadership of the Community Education Research Program of the Emory/Morehouse/Georgia Institute of Technology Atlanta Clinical Translational Science Institute (NIH CTSA), the Principal Investigators, representatives of each program component, and an independent K–12 STEM evaluator from the Georgia Department of Education.

The Community Advisory Board, including educators, parents, and community members, will help guide the program’s implementation and monitor progress. A committee of NIH-funded investigators, representing multiple NIH institutes along with experienced science writers, will lead the effort for dissemination and assure that on-going and new NIH research priorities are integrated into the program’s curriculum over time.
DATE: -
TEAM MEMBERS: Adam Marcus Theresa Gillespie
resource research Media and Technology
By using widely-available technologies, this project brings fully online instructional coaching in STEM to out-of-school educators who live too remotely to attend ongoing in-person workshops.
DATE:
TEAM MEMBERS: Sue Allen Perrin Chick Scott Byrd Alexandria Brasili Liv Detrick Lynn Farrin Hannah Lakin
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The project will derive a nationwide online coaching/mentoring program for out of school educators in rural settings. The program builds on a Noyce Foundation pilot project. The issue to be addressed is that educators in rural settings are challenged in a multitude of ways due to isolation. This project will try to find ways to alleviate some of the consequences of isolation through resource sharing, knowledge sharing, and unique techniques for communicating with students. Partners in this effort are the Maine Mathematics and Science Alliance, the National AfterSchool Association, Development Without Limits, and the Maine State Library.

By using widely-available technologies, this project will bring fully online instructional coaching in STEM to out-of-school educators who live too remotely to attend ongoing in-person workshops. The project team will achieve this by adapting a highly promising coaching program where groups of educators video-record their own work with youth, practice key skills, and meet regularly to discuss their work. The project will: (a) test technical challenges to achieve fully virtual implementation; (b) design and adapt a specific STEM-skill curriculum to align with different levels of need; (c) customize the model to work with rural librarians; and (d) integrate the work into existing state and national accreditation systems.
DATE: -
TEAM MEMBERS: Sue Allen
resource project Public Programs
The State University of New York (SUNY) and the New York Academy of Sciences (NYAS) are collaborating to implement the SUNY/NYAS STEM Mentoring Program, a full scale development project designed to improve the science and math literacy of middle school youth. Building upon lessons learned through the implementation of national initiatives such as NSF's Graduate STEM Fellows in K-12 Education (GK-12) Program, university initiatives such as the UTeach model, and locally-run programs, this project's goals are to: 1) increase access to high quality, hands-on STEM programs in informal environments, 2) improve teaching and outreach skills of scientists in training (graduate and postdoctoral fellows), and 3) test hypotheses around scalable program elements. Together, SUNY and NYAS propose to carry out a comprehensive, systemic science education initiative to recruit graduate students and postdoctoral fellows studying science, technology, engineering, and mathematics (STEM) disciplines at colleges and universities statewide to serve as mentors in afterschool programs. SUNY campuses will partner with a community-based organization (CBO) to place mentors in afterschool programs serving middle school students in high-need, low-resource urban and rural communities. Project deliverables include a three-credit online graduate course for mentor training, six pilot sites, a best practices guide, and a model for national dissemination. The online course will prepare graduate and postdoctoral fellows to spend 12-15 weeks in afterschool programs, introducing students to life science, earth science, mathematics and engineering using curriculum modules that are aligned with the New York State standards. The project design includes three pre-selected sites (College of Nanoscale Science & Engineering at the University of Albany, SUNY Institute of Technology, and SUNY Downstate Medical Center) and three future sites to be selected through a competitive process, each of which will be paired with a CBO to create a locally designed STEM mentoring program. As a result, a minimum of 192 mentors will provide informal STEM education to 2,880 middle school students throughout New York State. The comprehensive, mixed-methods evaluation will address the following questions: 1) Does student participation in an afterschool model of informal education lead to an increase in STEM content knowledge, attitudes, self-efficacy, and interest in pursuing further STEM education and career pathways? 2) Do young scientists who participate in the program develop effective teaching and mentoring skills, and develop interest in teaching or mentoring career options that result in STEM retention? 3) What are the attributes of an effective STEM afterschool program and the elements of local adaptation and innovation that are necessary to achieve a successful scale-up to geographically diverse locations? 4) What is the role of the afterschool model in delivering informal STEM education? This innovative model includes a commitment to scale across the 64 SUNY campuses and 122 Councils of the Girl Scouts of the USA, use an online platform to deliver training, and place scientists-in-training in informal learning environments. It is hypothesized that as a result of greater access to STEM education in an informal setting, participating middle school youth will develop increased levels of STEM content knowledge, self-efficacy, confidence in STEM learning, and interest in STEM careers. Scientist mentors will: 1) gain an understanding of the context and characteristics of informal science education, 2) develop skills in mentoring and interpersonal communication, 3) learn and apply best practices of inquiry instruction, and 4) potentially develop interest in teaching as a viable career option. It is anticipated that the project will add to the research literature in several areas such as the effectiveness of incentives for graduate students; the design of mentor support systems; and the structure of pilot site programs in local communities. Findings and materials from this project will be disseminated through presentations at local, regional, and national conferences, publications in peer-reviewed journals focused on informal science education, and briefings sent to more than 25,000 NYAS members around the world.
DATE: -
resource project Public Programs
This Pathways Project connects rural, underserved youth and families in Eastern Washington and Northern Idaho to STEM concepts important in sustainable building design. The project is a collaboration of the Palouse Discovery Science Center (Pullman, WA), Washington State University and University of Idaho, working in partnership with rural community organizations and businesses. The deliverables include: 1) interactive exhibit prototype activities, 2) a team cooperative learning problem-solving challenge, and (3) take-home materials to encourage participants to use what they have learned to investigate ways to make their homes more energy-efficient and sustainable. The project introduces youth and families to the traditionally difficult physics concept of thermal energy, particularly as it relates to sustainable building design. Participants explore how building materials and their properties can be used to control all three types of heat transfer: conduction, convection, and radiation. The interactive exhibit prototypes are coupled with an Energy Efficient Engineering Challenge in which participants, working in cooperative learning teams, use information learned from the exhibit prototype activities to retrofit a model house, improving its energy efficiency. The project components are piloted at the Palouse Discovery Science Center, and then travel to three underserved rural/tribal communities in Northern Idaho and Eastern Washington. Front-end and formative evaluation studies will demonstrate whether this model advances participant understanding of and interest in STEM topics and careers. The project will yield information about ways that other ISE practitioners can effectively incorporate cooperative learning strategies in informal settings to improve the transferability of knowledge gained from exhibits to real-world problem-solving challenges, especially for rural and underserved audiences. This project will also provide the ISE field with: 1) a model for increasing the capacity of small, rural science centers to form collaborative regional networks that draw on previously unused resources in their communities and provide more effective outreach to the underrepresented populations they serve, and 2) a model for coupling cooperative learning with outreach exhibits, providing richer experiences of active engagement.
DATE: -
TEAM MEMBERS: Kathleen Ryan Kathy Dawes Christine Berven Anne Kern Patty McNamara
resource research Public Programs
This white paper is the product of the CAISE Formal-Informal Partnerships Inquiry Group, which began work during a July 2008 ISE Summit organized by CAISE. Their examination of what the authors call "the hybrid nature of formal-informal collaborations" draws on relevant theoretical perspectives and a series of case studies to highlight ways in which the affordances of formal and informal settings can be combined and leveraged to create rich, compelling, authentic, and engaging science that can be systematically developed over time and settings.
DATE:
TEAM MEMBERS: Center for Advancement of Informal Science Education (CAISE) Bronwyn Bevan Justin Dillon George Hein Maritza Macdonald Vera Michalchik Diane Miller Dolores Root Lorna Rudder-Kilkenny MARIA XANTHOUDAKI Susan Yoon
resource project Public Programs
The Developmental Studies Center (DSC) will implement "Home, School and Community: AfterSchool Math for Grades 3-5," a program that targets at-risk and low income children in afterschool programs. AfterSchool Math trains youth workers to help students in grades 3-5 better understand measurement and geometry concepts, building on the success of the NSF-funded Home, School and Community mathematics program for grades K-2 (ESI #97-05421). The project develops, field-tests and evaluates thirty math games and ten story guides, which support the social and mathematical development of children, while emphasizing cooperative learning. The content for all materials will be aligned with national standards in mathematics. A 12-hour professional development workshop for youth workers and an 18-hour workshop for facilitators or youth worker leaders are also planned. Two training videos and a facilitator manual will be produced to support this aspect of the project. Field testing will occur in Kansas, Louisiana and Missouri. This proposal has been augmented to include a special emphasis on rural communities which doubles the number of field test sites from 50 to 100. A Rural Outreach Specialist will conduct focus group meetings to determine needs unique to rural programs and lead the field testing in these communities. It is anticipated that over 3,200 youth workers will be trained and a national cadre of more than 300 youth worker leaders will be created.
DATE: -
TEAM MEMBERS: Frank Snyder
resource project Public Programs
The Lunar and Planetary Institute will expand a successful pilot program in which libraries in Texas and Louisiana are used as community learning centers. The program is two-fold and includes both "Explore!" resource materials and "Fun with Science" modules. "Explore!" materials are a collection of space science posters, brochures, fact sheets, videotapes and references. These resources are disseminated to librarians for use as part of their collections and to support the "Fun with Science" modules. "Fun with Science" consists of eight space science modules that librarians are trained to use in after-school and summer youth programs. Module topics include rocketry, comets, impact cratering, remote sensing and space capsule design. Each year, 3-4 new modules will be produced. Librarians receive training on content, activities and NASA resources in 2-3 day sessions. The dissemination plan would enable the program to expand to include public libraries in Texas, Illinois (Chicago) and South Carolina, as well as school libraries as a secondary audience. Rural sites will be targeted and distance learning will be used for training when possible. CD ROMs containing the modules, training videos and a website will be developed to support this project.
DATE: -
TEAM MEMBERS: Stephanie Shipp Pamela Thompson Mary Noel
resource project Public Programs
Research shows that participation and interest in science starts to drop as youth enter high school. This is also the point when science becomes more complex and there is increased need for content knowledge, mathematics capability, and computer or computational knowledge. Evidence suggests that youth who participate in original scientific research are more likely to enter and maintain a career in science as compared to students who do not have these experiences. We know young people get excited by space science. This project (STEM-ID) is informed by previous work in which high school students were introduced to scientific research and contributed to the search for pulsars. Students were able to develop the required science and math knowledge and computer skills that enabled them to successfully participate. STEM-ID builds on this previous work with two primary goals: the replication of the local program into a distributed program model and an investigation of the degree to which authentic research experiences build strong science identities and research self-efficacies. More specifically the project will support (a) significant geographic expansion to institutions situated in communities with diverse populations allowing substantial inclusion of under-served groups, (b) an online learning and discovery environment that will support the participation of youth throughout the country via online activities, and (c) opportunities for deeper participation in research and advancement within the research community. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and understanding of, the design and development of STEM learning in informal environments. STEM-ID will serve 2000 high school youth and 200 high school teachers in afterschool clubs with support from 30 undergraduate and graduate students and 10 college/university faculty. Exploratory educational research will determine the broad mechanisms by which online activities and in-person and online peer-mentor teacher-scientist interactions influence science identity, self-efficacy, motivation, and career intentions, as well as a focused understanding of the mechanisms that influence patterns of participation. Youth will be monitored longitudinally through the first two years of college to provide an understanding of the long-term effects of out-of-class science enrichment programs on STEM career decisions. These studies will build an understanding of the best practices for enhancing STEM persistence in college through engagement in authentic STEM programs before youth get to college. In addition to the benefits of the education research, this program may lead participants to discover dozens of new pulsars. These pulsars will be used for fundamental advances such as for testing of general relativity, constraining neutron star masses, or detecting gravitational waves. The resulting survey will also be sensitive to transient signals such as sporadic pulsars and extragalactic bursts. This project provides a potential model for youth from geographical disparate places to participate in authentic research experiences. For providers, it will offer a model for program delivery with lower costs. Findings will support greater understanding of the mechanisms for participation in STEM. This work is being led by West Virginia University and the National Radio Astronomy Observatory. Participating sites include California Institute of Technology, Cornell University, El Paso Community College, Howard University, Montana State University, Penn State University, Texas Tech University, University of Vermont, University of Washington, and Vanderbilt University.
DATE: -
TEAM MEMBERS: Sue Ann Heatherly Maura McLaughlin John Stewart Duncan Lorimer