Skip to main content

Community Repository Search Results

resource research Media and Technology
This poster was presented at the 2021 NSF AISL Awardee Meeting. Collaborative robots – cobots – are designed to work with humans, not replace them. What learning affordances are created in educational games when learners program robots to assist them in a game instead of being the game? What game designs work best?
DATE:
TEAM MEMBERS: Ross Higashi
resource research Public Programs
Described by Wohlwend, Peppler, Keune and Thompson (2017) as “a range of activities that blend design and technology, including textile crafts, robotics, electronics, digital fabrication, mechanical repair or creation, tinkering with everyday appliances, digital storytelling, arts and crafts—in short, fabricating with new technologies to create almost anything” (p. 445), making can open new possibilities for applied, interdisciplinary learning in science, technology, engineering and mathematics (Martin, 2015), in ways that decenter and democratize access to ideas, and promote the construction
DATE:
TEAM MEMBERS: Jill Castek Michelle Schira Hagerman Rebecca Woodland
resource evaluation Afterschool Programs
Concord Evaluation Group (CEG) conducted an outreach partner evaluation for Design Squad Global (DSG). DSG is produced and managed by WGBH Educational Foundation. WGBH partnered with FHI360, a nonprofit human development organizations working in 70 countries, to implement DSG around the globe. In the DSG program, children in afterschool and school clubs explored engineering through hands-on activities, such as designing and building an emergency shelter or a structure that could withstand an earthquake. Through DSG, children also had the chance to work alongside a partner club from another
DATE:
TEAM MEMBERS: Marisa Wolsky Sonja Latimore Christine Paulsen Steven Ehrenberg
resource research Public Programs
The lack of equitable access to science learning for marginalized groups is now a significant concern in the science education community (Bell et al. 2009). In our commitment to addressing these concerns, we (the HERP Project staff) have spent four years exploring different ways to increase diverse student participation in our informal science programs called herpetology research experiences (HREs). We wanted the demographics of participants to mirror the racial, ethnic, cultural, linguistic, and socioeconomic demographics of the areas where our HREs are held. To achieve this, project staff
DATE:
TEAM MEMBERS: Aerin Benavides Amy Germuth Catherine Matthews Lacey Huffling Mary Ash
resource project Public Programs
Chemistry is an important and widely relevant field of science. However, when compared with other STEM content areas, chemistry is under-represented in U.S. science museums and other informal educational environments. This project will build, and build knowledge about, innovative approaches to delivering informal science learning activities in chemistry. The project will not only increase public interest and understanding of chemistry but also increase public perception of chemistry's relevance and increase the public's self-efficacy with respect to chemistry. This project outcomes will include a guide for practitioners along with activity materials that will be packaged into a kit, distributed, and replicated for use by informal science educators, chemists, and chemistry students at 250 sites across the U.S. The project team will reach out to organizations that serve diverse audiences and diverse geographic locations, including organizations in rural and inner-city areas. The kits will provide guidance on engaging girls, people with various abilities, Spanish speakers, and other diverse audiences, and include materials in Spanish. Written guides, training videos, and training slides will be included to support training in science communication in general, as well as chemistry in particular. This project is supported by the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings, as a part of its overall strategy to enhance learning in informal environments.

This project will take an innovative approach to develop informal educational activities and materials about chemistry. Rather than starting with content goals, the project will start with a theoretical framework drawn from research about affecting attitudes about science related to interest, relevance, and self-efficacy. A design-based research approach (DBR) will be used to apply that framework to the development of hands-on educational activities about chemistry, while also testing and modifying the framework itself. (DBR blends empirical educational research with the theory-driven design of learning environments.) Existing or new educational activities that appear to embody key characteristics defined in the framework will be tested with public audiences for their impact on visitors. Researchers and educators will determine how different characteristics of the educational activities defined in the framework affect the outcomes. The activities will be modified and tested iteratively until the investigators achieve close alignment between framework and impacts.. The project team will continue the design-based research approach both to examine groups of activities in which synergies can have impacts beyond single interactions as well as to examine varied ways of training facilitators who can also significantly affect outcomes. In this way, the project will generate knowledge about how kits of hands-on informal learning activities can stimulate attitudes of interest, relevance, and self-efficacy with respect to the neglected field of chemistry. The project teams will broadly disseminate project outcomes within the educational research, science and informal Science, Technology, Engineering and Mathematics (STEM) education communities. While this project will focus on chemistry, the strategies it will develop and test through a design-based research process will provide valuable insight into effective approaches for informal STEM education more broadly.
DATE: -
resource research Public Programs
Deals with the success of the Rural Girls in Science Program at the University of Washington in Seattle, Washington State, which uses science to address local issues through long-term research projects. Source of funding for the program; Components of the research projects; Factors which contributed to the success of the program.
DATE:
TEAM MEMBERS: Angela Ginorio Janice Fournier Katie Frevert
resource project Public Programs
This Planning Grant will enable the Ohio State University to address the shortage of professional engineers in the United States by designing an engineering curriculum for dissemination through the 4-H system. Planning activities include the establishment of a nationwide advisory committee, solicitation of input from the target audience via focus groups and the development of a plan for the curriculum and its content, designed to address the needs of young women and underserved groups. Pilot testing of sample units will occur in Ohio, Louisiana and Indiana. A recruitment plan will also be developed to aide with national dissemination.
DATE: -
TEAM MEMBERS: Randall Reeder
resource project Public Programs
KY-H.E.R.O.S. (Health Education Rural Outreach Scientists) is a health science education program that partners the largest science center in Kentucky with Science Heroes-- important regional biomedical research scientists. The Science Heroes, their stories and their studies serve as inspiration to our rural audience. The project objectives are to: (1) Convey the relevance of health science research to people's daily lives and promote awareness of healthy lifestyle choices and wellness; (2) Promote understanding of the fundamental principles of the scientifc process and inspire K-12 teachers to incorporate current research into their teaching of health science; and (3) Encourage students to pursue advanced science education and increase awareness of the wide range of health science related careers. The Science Center, working with the distinguished Science Heroes, their research teams and a group of 15 knowledgeable professional advisors will develop the new KY-H.E.R.O.S. science education program. The program will include new hands-on labs and demonstrations, teacher training workshops, career exploration activities, interactive videoconferencing distance learning links, and innovative public programs. Using museum-based exhibits and a wet lab, traveling exhibit components, telelinking (distance learning), an interactive website and printed and electronic materials, we will present information about the work of the Science Heroes and its relevance to the lives of participants. The focus of the program will change every two years to feature three different scientists and their work. A total of nine scientists will be included during the 5 year period covered by the SEPA grant. As the focus changes every two years to a different three scientists, all the programs and exhibits will be changed accordingly. KY-H.E.R.O.S. will be designed to serve audiences composed of school groups on field trips; teachers in workshops; classes in remote areas of the state participatng through videoconferencing; underserved groups including economically disadvantaged, minorities and young women; and the family audience that makes up about 60% of the Science Center's annual attendance. Formative and summative evaluation will be conducted by an outside firm to ensure effectiveness.
DATE: -
TEAM MEMBERS: Amy Lowen Beth Blakeley