Skip to main content

Community Repository Search Results

resource research Public Programs
Children and their families are practicing STEAM (Science, Technology, Engineering, Arts, and Math) skills through a library program. Hand-crank generators and LED bulbs are set out on each of the tables, along with two types of dough—conductive play dough and insulating modeling clay.
DATE:
TEAM MEMBERS: Brooks Mitchell Claire Ratcliffe Keliann LaConte
resource research Public Programs
As public libraries continue to evolve, library staff seek to expand their STEM facilitation skills and knowledge. “NASA STEM Workshops” prepared 363 attendees to facilitate space-themed programs. External evaluation found that months later, attendees facilitated more STEM programming, became more confident and aware of STEM resources, and shared these resources with others. The professional development model demonstrated the importance of (1) practical, hands-on experiences to cultivate internal confidence and interest in facilitating STEM activities, and (2) increased attention to external
DATE:
resource project Exhibitions
NASA@ My Library is made possible through the support of the National Aeronautics and Space Administration (NASA) Science Mission Directorate as part of its Science Activation program. The project is led by the National Center for Interactive Learning (NCIL) at the Space Science Institute (SSI) in partnership with the American Library Association (ALA) Public Programs Office, Lunar and Planetary Institute (LPI), and Education Development Center (EDC). From 2016-2020, 78 public libraries (75 partner libraries and 3 pilot libraries), 18 State Library Agencies, 6 Portal to the Public Network sites, and 30 NASA-funded scientists participated in the project. More than 225,000 library patrons were reached through their efforts.

In 2021-2022, public libraries, universities, and state library agencies will participate in the project to increase and enhance STEAM learning opportunities in their communities, with an emphasis on reaching audiences underrepresented in STEM education and professions. 
DATE: -
TEAM MEMBERS: Keliann LaConte Paul Dusenbery Anne Holland James Harold Melanie Welch Lainie Castle Christine Shupla Jessica Santascoy Ginger Fitzhugh
resource research Public Programs
‘Escape rooms’ are a recent cultural phenomena, whereby a group of ‘players’, often friends or colleagues, are ‘locked’ in a room and must solve a series of clues, puzzles, or mysteries in order to ‘escape’. Escape rooms are increasingly appearing in a range of settings, including science centres and museums, libraries and university programmes, but what role can an escape room play in science communication? In this commentary, we explore the emerging literature on escape rooms as well as thoughts from a small number of escape room creators in the U.S. and U.K.
DATE:
TEAM MEMBERS: Clare Wilkinson Hannah Little
resource evaluation Media and Technology
Through Project BUILD, a STAR Library Network (STAR Net) program funded by the National Science Foundation, the American Society of Civil Engineers (ASCE) and the Space Science Institute’s National Center for Interactive Learning (NCIL) offered the virtual Dream, Build, Create program which consisted of (1) the award-winning documentary Dream Big: Engineering Our World and (2) five live-streamed panels of diverse engineers (Dream Teams) who shared their stories of what it means to be an engineer. The external evaluation, conducted by Education Development Center (EDC), aimed to examine how
DATE:
resource project Media and Technology
This project will teach foundational computational thinking (CT) concepts to preschoolers by creating a series of mobile apps to guide families through sequenced sets of videos and hands-on activities. To support families at home it would also develop a new library model to build librarians' computational thinking content knowledge and self-efficacy so they can support parents' efforts with their children. Computational thinking is a an increasingly critical skill for learning and success in the workforce. It includes the ability to identify problems, brainstorm and generate solutions and processes that can be communicated and followed by computers or humans. There are few projects that introduce computational thinking to young children. Very little research has been done on the ways that parents can facilitate children's engagement in CT skills. And developing a model that trains and supports librarians to become virtual coaches of parents as they engage with their children in CT, will leverage and build the expertise of librarians. The project's target audience includes parents and children living in rural areas where access to CT learning may be very limited. Project partners include the EDC, a major research organization, the American Library Association, and BUILD, a national association that promotes collaborations across library, kindergarten readiness, and public media programming.

The formative research study asks: 1) What supports do parents of preschoolers in rural communities need in order to effectively engage in CT with their children at home? and 2) How can libraries in rural communities support joint CT exploration in family homes? The summative research study asks: 3) how can an intervention that combines media resources, mobile technology, and library supports foster sustained joint parent/child engagement and positive attitudes around CT? Researchers will develop a parent survey, adapting several scales from previously developed instruments that ask parents to report on children's use of CT-related vocabulary and CT-related attitudes and dispositions. Survey scales will assess librarians' attitudes towards CT, as well as their self-efficacy in supporting parents in CT in a virtual environment. During the formative study, EDC will pilot-test survey scales with 30 parents and 6 librarians in rural MS and KY. Analyses will be primarily qualitative and will be geared toward producing rapid feedback for the development team. Quantitative analyses will be used on parent app use, using both time query and back-end data, exploring factors associated with time spent using apps. The summative study will evaluate how the new media resources and mobile technology, in combination with the library virtual implementation model, support families' joint engagement with CT, and positive attitudes around CT. The researchers will recruit 125 low-income families with 4- to 5-year-old children in rural MS and KY to participate in the study. They will randomly assign families within each library to the full intervention condition, including media resources, mobile technology, and library support delivered through the virtual implementation model, or the media and mobile-technology-only condition. This design will allow researchers to understand more fully the additional benefit of library support for rural families' sustained engagement, and conversely, see the comparative impact of a media- and mobile-technology only intervention, given that some families might not be able to access virtual or physical library support.

As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project is co-funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Marisa Wolsky Heather Lavigne Jessica Andrews Janna Kook
resource project Professional Development, Conferences, and Networks
In the 1990s, Science Cafes emerged that brought together people from all walks of life with scientists in conversation over science, technology, engineering, and mathematics (STEM) topics. The cafes were popular as conversations were informal in casual settings and engendered deep discussions. In 2007, Science Education Solutions received a grant from NSF and began an experiment to see if the adult science café model could be adapted to appeal to high school teens. The program, Café Scientifique New Mexico, became very popular with teens in towns across northern New Mexico. The blend of conversing with scientists about interesting science topics in an out-of-school social setting and digging deeper with hands on activities proved successful. The teen model was refined through trial and error and formal evaluation over several years. Today it continues to provide teens with a new perspective on the nature of science and a picture of scientists as real people leading interesting lives. The Teen Science Café Network (TSCN) was formed in 2012 with NSF funding to allow other individuals and organizations to start their own versions of the Teen Science Café, adapted to their local institutions and demographics. Five founding member organizations around the United States formed the initial Network and each began creating their own Teen Science Café programs. Today the TSCN is a dynamic, growing community of practice spread across the country with the mission of connecting high school teenagers with STEM and STEM experts via the science café model. The network currently has approximately 133 member organizations in 46 states and Canada. This project will move the network to a much larger scale by creating organization and professional support structures to create a strategically growing social movement with distributed leadership, organizational infrastructure, and robust professional development for long-term stability with a goal to increase the number of member organizations to 500 over five years. Building on the literature on professional development for informal science educators and the literature on network capacity building, network sustainability, and scale, the project will also conduct research that will inform the field about successful model diffusion. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understanding of deeper learning by participants.

This Innovations in Development project has five objectives. The first is to re-structure the Teen Science Café Network (TSCN) to a more distributed leadership model that will move the network to long-term sustainability. The PI team will identify five experienced individuals already leading strong café programs to become Guides for new sites. These Guides will provide training, support, and mentorship to new network members. Each Guide will have responsibility over a given year for mentoring two cohorts of nine sites, allowing the network to increase in size over the next five years. The second objective is to implement an interactive program of professional development for new network members. The training will involve approximately 15 hours of adult leader training focused on building skills around teen engagement and café management. The third objective will be to strategically engage all members in the network community of practice through opportunities to participate in and lead ongoing learning with their peers. Through webinars, Birds of a Feather groups and annual workshops and a Science Events Summit, café leaders will actively hone professional skills and broaden their personal network. Objective four is to broaden the involvement of organizations and communities not currently in the network through strategic recruitment of STEM professional societies, military youth programs, library networks, and youth-serving organizations, among other organizations. Finally, objective five is to implement a research agenda to contribute to the informal learning knowledge base. The research will focus on how the project's approach to network growth and distributed leadership leads to effective scaling and sustainability.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Michelle Hall Michael Mayhew
resource project Public Programs
There is a national need to expand opportunities to learn coding and computational thinking in informal science, technology, engineering, and mathematics (STEM) education. These skills are increasingly needed in STEM disciplines. As young people learn to code, they engage in computational thinking concepts and practices which are problem solving strategies that include repeated process (iterative) design skills. This project promotes innovation by designing and developing activities for tinkering spaces (a space filled with materials for hands-on exploration of STEM) combined with coding in informal learning organizations such as museums, and community centers. The project supports both tinkering and making as methods to meaningfully incorporate computational thinking in STEM learning experiences. The tinkering approach to learning is characterized by hands-on, trial and error engagement. Making is similar to tinkering with additional attention to learning with peer groups. The long-term goal of the project is to enable informal educators to engage in STEM programming with youth and families from underrepresented groups. The project brings together interdisciplinary teams from the Department of Information Science at the University of Colorado Boulder (CU Boulder), the Tinkering Studio at the Exploratorium, and the Lifelong Kindergarten research group at the Massachusetts Institution of Technology. In collaboration with local partner sites, the project team will design and disseminate a collection of six computational tinkering activity areas that engage learners in creative explorations using a combination of physical objects and computational code. The team will develop visual coding "microworlds" for each of the activity areas, specialized sets of coding blocks designed to provide scaffolding. Additionally, the project team will design and develop facilitation guides to document these activities and facilitation strategies, as well as workshops to better support facilitators in making and tinkering spaces.

The project enhances knowledge building through investigations of what instructional supports informal educators need to develop effective facilitation practices that engage underrepresented youth and families in STEM computational learning experiences. Study participants will include informal educators in museum, library, and community-based settings with varying backgrounds and experiences facilitating computing activities. The project team will also engage youth and families from underrepresented groups through collaborative efforts with community-based partners. Research questions include: 1) What challenges and barriers do informal learning educator, face to engage their learners in design-based activities with computing? 2) What supports informal learning educators to take on key facilitation practices that support children and families in computational tinkering activities? 3) In jointly engaging in these computational tinkering activities, how do the activities and informal learning educators? facilitation of these activities impact children's and families' development of computational tinkering and identities as creators and learners with computing? To answer these research questions the project will use qualitative ethnographic methods to study the developing interactions between learners and facilitators at three local sites. Comparative case studies of facilitators across the local partner sites will also be used to examine what supports facilitators to take on key facilitation practices. Data sources will include participant observation of facilitators and families, documentation in the form of photos, videos, and audio recordings, project artifacts, bi-monthly short surveys with reflective prompts, and interviews with facilitators and families.

This award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Public Programs
Youth generate data in the form of social media posts, and they are likely to understand that these data can be used by others for multiple purposes. However, they may be less likely to know that other personal data, such as records related to shopping patterns or medical visits, can also be tracked, analyzed, and used. Consequently, today's young people have a personal stake in their ability to understand and critically question multiple types of data practices. This project will advance knowledge regarding how informal educational organizations can empower young people in a data-centric world. In partnership with public libraries in New York City, Pratt Institute will develop a model for supporting critical data literacy in informal settings. Critical data literacy includes the ability to critique data practices throughout the data life cycle; to situate data within broader contexts such as cyberinfrastructures and societal trends; and to use data to answer questions and to achieve purposes that are personally meaningful and important. To develop a model of informal education that supports critical data literacy, the project team will co-design data literacy sessions with teenagers in libraries. These data literacy sessions will provide teens with opportunities to engage in critical data practices and inquiry in the context of issues they identify as being important to them. The project team will conduct research on the methods that support youths' co-design of critical data literacy programs. This project will result in a model of a youth-driven educational program that can be scaled and enacted in libraries and informal settings nationwide, with the ultimate purpose of fostering a more empowered, data-literate citizenry.

The project will recruit 25 teenagers ages 13-17, including those from underrepresented groups, to co-design and implement four to six 90-minute critical data literacy sessions in a public library. The research team will use design-based participatory research to study the process of co-design, and they will improve this co-design process with three additional cohorts of 25 teenagers each. This study will answer the following three research questions: (1) How can critical data literacy be supported within the sociohistorical context of the public library in ways that speak to young people? (2) How can the affordances of co-design scaffold meaningful informal learning about critical data literacy? (3) What do the designs and artifacts created by young people say about sustained engagement and learning with regard to facets of critical data literacy? To answer these questions, the research team will use thematic and descriptive coding to analyze data sources such as interviews and focus groups with teens and library staff, observations of critical data literacy sessions, youth-generated artifacts, and surveys with youth participants. Empirical findings will be disseminated widely through professional networks, conferences, and journals for informal educators, educational researchers, and information scientists, and the co-design model will be disseminated widely to practitioners of informal science education. This project is funded by the Advanced Informal STEM Learning (AISL) program. As part of its overall strategy to enhance learning in informal environments, the AISL program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This Pilot and Feasability Study award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Leanne Bowler Mark Rosin Irene Lopatovska
resource evaluation Public Programs
The Space Science Institute’s (SSI) National Center for Interactive Learning (NCIL), in partnership with the American Society for Civil Engineers (ASCE) and the University of Virginia (UVA), was awarded a grant from the National Science Foundation (NSF) to develop and implement a 3-year program, Project BUILD (Building Using an Interactive Learning Design). Project BUILD aims to bring together public library staff from six libraries (three rural and three urban) and professional engineers from ASCE to engage youth in grades 2-5 and their families in age-appropriate, technology-rich
DATE:
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

This RAPID was submitted in response to the NSF Dear Colleague letter related to the COVID-19 pandemic. This award is made by the AISL program in the Division of Research on Learning, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. The project will develop and research an integrated package of high-quality, widely accessible media and other outreach materials designed to engage middle school youth, educators, and libraries in learning about viruses in relation to COVID-19. There is an immediate need to provide youth with accurate, engaging, and accessible materials to help them understand the basic biology underlying the COVID-19 pandemic, including the routes of COVID-19 transmission and mechanisms to prevent its spread. This is particularly important for those without science backgrounds or interests so that the rumors, hearsay, and gossip circulating among youth can be replaced with research-based information. Since 2007, the project team and partners have focused on developing and studying new ways of educating youth and the public about biology, virology, and infectious disease. The project will develop a web-accessible package of customizable graphics, illustrated stories, and essays--all of which can be easily incorporated into free-choice and directed on-line learning as well standards-based lesson plans for Grades 6-8. These resources will be disseminated broadly and at no cost to youth and educators of all kinds, including schools, libraries, museums, and other established networks for formal and informal science education. The project web package will be linked to multiple websites that serve as important educational resources on science and virology for youth, the general public, and educators. A prominent university press will publish and promote the illustrated stories and support distribution of 7,000 free copies.

The project will conduct research examining how richly-illustrated science narratives impact youth understanding of and curiosity about science. The research will help develop the foundation for better understanding how to educate youth about COVID-19 (and future pandemics) while generating new knowledge about effective methods for public science outreach during a major unanticipated natural event. For formative evaluation, the project will use an innovative rapid response feedback method. Youth will be invited to provide timely, specific comments on the serialized stories through a curated portal. As new excerpts are related online, different questions will be posed to youth who are selected because of specific characteristics (e.g., low or high initial science interest). These data will guide story development in real time and provide a mechanism to gauge the story appeal, comprehensibility, and initial impacts. The project will address two research questions: (1) How effective are illustrated stories in having positive impacts among participants on COVID-19 knowledge, science identity, attitudes, and interest in science careers?; and (2) How do story lines and characters have differential impacts on virus knowledge, epidemiology, and youth attitudes towards science and science careers? To conduct this research, the project will conduct online surveys using adapted items from prior research conducted by the project team. Additional items will assess COVID-19 knowledge, attitudes, personal experiences with the virus, well-being, and exposure to public health messaging about the virus. Research findings will be shared widely to inform the field about new ways delivering science education content during the advent of rapidly evolving global and educational challenges.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Judy Diamond Julia McQuillan Patricia Wonch Hill Elizabeth VanWormer
resource evaluation Public Programs
The Farrell Fellows Summer Internship program consists of teen educators leading science, technology, engineering and math (STEM) activities for children at libraries and park locations across Chicago. The goal of this study was to learn more about the families who attend the sessions and to also look for evidence of learning and how that may be related to the moods and attitudes of the teen educators. Data was collected through observations of the sessions, pre- and post-session surveys of 26 teen educators, and 90 surveys of the parents of participating children. Field notes were coded using
DATE:
TEAM MEMBERS: Gloria Segovia Brett Nicholas Christine Nguyen Aaron Price