Skip to main content

Community Repository Search Results

resource project Media and Technology
Sea Studios Foundation will extend the Strange Days on Planet Earth multimedia initiative to raise public science literacy on pressing environmental issues. Based on pioneering Earth System Science research, Phase Two will be a media and outreach project focused on the ocean and water issues. The goal of the project is to increase public awareness and understanding of the scope and scale of key issues affecting the ocean. At the core of the project is a four part television documentary series for PBS primetime entitled Strange Days, Ocean. The programs will concentrate on four content areas: overexploitation of ocean resources, pollution, coastal development, climate change and the role of the ocean in Earth's system. Each episode is structured around a compelling scientific questions designed to engage the audience in a search for answers based on the most current research from the varied Earth System Science disciplines. The series focuses on explaining how scientists come to know what they know. The series will be complemented by activity-based learning supported by a national consortium of informal learning institutions, a citizen science program, training sessions for informal educators, and a project website. Collaborators include the National Geographic and three new major partners: Monterey Bay National Marine Sanctuary Program to expand citizen science programs around invasive species; Americans for Informed Democracy (AID), dedicated to organizing college campus educational events; The Ocean Project (TOP), a network of 600 organizations; plus the Arizona Sonora Desert Museum and eight other informal science institutions. Knight Williams Research Communications, and Public Knowledge and Cultural Logic will assess the impact of the series. The project will contribute to the field of informal science education by providing widely applicable communication lessons on ocean and water issues and a model methodology for creating science education media that is credible, informative, and relevant. The results of two unique adult learning case studies will be shared with the field through presentations at national meetings and workshops, and posted online.
DATE: -
TEAM MEMBERS: Mark Shelley David Elisco Tierney Thys
resource project Media and Technology
This Pathways project will develop and evaluate a new model for a STEM career exploration program for at-risk Hispanic youth and their families in New Mexico where 46% of the population is Hispanic. The target audience includes Hispanic youth incarcerated in juvenile detention centers. The Hispanic Communications Network will partner with the Juvenile Justice Division of the New Mexico Children, Youth, and Families Department, Youth Development Inc.; and Youth Works in Santa Fe. STEM professionals from Los Alamos and Sandia labs and private sector companies in New Mexico will participate as role models. The evaluation findings will add to the knowledge base about strategies to increase interest and engagement in pursuing STEM careers among hard-to-reach Hispanic audiences including low income families, gang members and incarcerated youth. The project design includes using two main strategies: family evenings with STEM role models; and a social media and Facebook contest focusing on Green Jobs of the Future. The evaluation will use a mixed-methods approach for gathering data including brief questionnaires after the family evenings, pre-and past-activity surveys, observations, and telephone and online surveys. The evaluation will provide ongoing feedback to the project team on how well the strategies are working. The project will hold 8 family nights, involve approximately 16 STEM professionals (role models), and projects about 16 edited media submissions by the youth teams. Toward the end of the project the evaluation will comment on the viability, efficacy and potential transferability of this model to other communities.
DATE: -
TEAM MEMBERS: Carlos Alcazar Trinity Treat Alliyah Noor Lynn Dierking
resource project Media and Technology
The University of Chicago's Yerkes Observatory, the National Radio Astronomy Observatory, the University of North Carolina, the Astronomical Society of the Pacific, and 4-H are collaborating to provide professional development to 180 4-H leaders and other informal science educators, and engage 1,400 middle school youth in using research-grade robotic telescopes and data analysis tools to explore the Universe. Youth participating in 4H-based out-of-school programs in Wisconsin, West Virginia and North Carolina are learning about the universe and preparing for STEM careers by conducting authentic astronomy research, completing astronomy-related hands-on modeling activities, interacting with astronomers and other professionals who are part of the Skynet Robotic Telescope Network, and interacting with other youth who part of the Skynet Junior Scholars virtual community. The project is innovative because it is providing a diverse community of 4-H youth (including sight- and hearing-challenged youth and those from underrepresented groups) with opportunities to use high-quality, remotely located, Internet-controlled telescopes to explore the heavens by surveying galaxies, tracking asteroids, monitoring variable stars, and learn about the nature and methods of science. Deliverables include (1) online access to optical and radio telescopes, data analysis tools, and professional astronomers, (2) an age-appropriate web-based interface for controlling remote telescopes, (3) inquiry-based standards-aligned instructional modules, (4) face-to-face and online professional development for 4-H leaders and informal science educators, (5) programming for youth in out-of-school clubs and clubs, (6) evaluation findings on the impacts of program activities on participants, and (7) research findings on how web-based interactions between youth and scientists can promote student interest in and preparedness for STEM careers. The evaluation plan is measuring the effectiveness of program activities in (1) increasing youths' knowledge, skills, interest, self-efficacy, and identity in science, including youth who are sight- and hearing-impaired, (2) increasing educators' competency in implementing inquiry-based instruction and their ability to interact with scientists, and (3) increasing the number of Skynet scientists who are involved in education and public outreach.
DATE: -
TEAM MEMBERS: Richard Kron Suzanne Gurton Daniel Reichart Sue Ann Heatherly
resource project Media and Technology
In Defense of Food (IDOF) is a media and outreach project based on Michael Pollan's best-selling book of the same title. Through the lens of food science, IDOF is designed to engage diverse audiences in learning about: (1) how science research is conducted, (2) how research findings are used in media, marketing, and public policy, and (3) how to apply food science research in everyday life. IDOF will be created by Kikim Media, an independent production company, broadcast and distributed by PBS and supported by an extensive outreach campaign and interactive website. The project's educational materials will be developed, in part, by the Teacher's College at Columbia University's Center for Food and Nutrition, with dissemination supported by the Coalition for Science After School and by Tufts University's Healthy Kids Out of School initiative, which involves nine of the leading out of school time (OST) organizations, such as Girl Scouts USA, and the National Urban League. The project advisory committee includes highly respected researchers in food, nutrition, and health. IDOF will use an integrated strategy of learning resources, combining a television documentary with online/social media, community outreach, and youth activities. Knight Williams Research Communications will conduct formative and summative evaluation of all major components of the project. The results will advance the informal science community's understanding of how the combination of a documentary with outreach, website/social media, and afterschool activities impacts motivation and learning. The evaluation study will pay special attention to the degree to which participation in the community events, social media/website, and afterschool activities motivates deeper or extended engagement with the subject. Project evaluation results and educational resources will be widely disseminated to the informal science community. IDOF includes a two-hour documentary film that will be produced in both English and Spanish; a community-level outreach campaign focused on reaching underserved audiences who may not watch public television; a set of activities for use in afterschool programs, youth programs and schools; and an interactive and content-rich website with tightly integrated social media tools. IDOF will be nationally broadcast by PBS; the Spanish-language version of IDOF will be broadcast by Vme Television. The ambitious IDOF educational materials and outreach campaign, combined with interactive web and social media, will reach large and diverse audiences. The intended impacts on audiences include increased knowledge and understanding of the scientific process by learning what food scientists do, what techniques they use, and how scientists arrive at their conclusions; the development of critical thinking skills audiences can use when evaluating messages about food and nutrition in media and advertising and when making decisions about what food to buy and eat; and becoming active learners and consumers regarding food. Evaluation results will be widely disseminated to science media producers and the informal science community via professional publications and presentations at conferences. The ultimate value of the In Defense of Food documentary and learning initiative will be to enhance public understanding of the crucial importance of science in people's everyday lives and in shaping dozens of daily decisions.
DATE: -
TEAM MEMBERS: Michael Schwarz
resource project Media and Technology
Iridescent is a not-for-profit company that develops and implements informal science and engineering experiences for students by facilitating the translation of the work that scientists and engineers do in a way that makes that work accessible to families. The proposal expands the Iridescent outreach activities funded by the Office of Naval Research, to provide a blended combination of in-person and online support to the families of underrepresented populations. The project is producing twenty videos of scientists and engineers presenting their research that are closely aligned with one hundred scientific inquiry and engineering design-based experiments and lesson plans. These digital resources, collectively called the Curiosity Machine, provide opportunities for parents and children to engage in scientific inquiry and engineering design in multiple face-to-face and online environments, including mobile technologies. The evaluation findings from this project provide a model of how to engage STEM education practitioners, teachers and online communities, to substantively connect underserved communities, in both informal and more formal learning environments to develop experiences with engineering design and to improve students' perspectives about and motivations to prepare for STEM careers. The Curiosity Machine portal is designed to present scientists and engineers explaining the work that they do in a way that makes it accessible to parents and students. Iridescent is working at three sites across the country in South Los Angeles, the South Bronx in New York City, and San Francisco. Students and their families have multiple access points to the science and engineering videos and materials through after school activities, Family Science Nights and summer camps. The project is piloting the use of electronic badges, similar to those offered in the Boy and Girl Scouts as a mechanism to enhance the engagement and persistence of students in the online activities. The project is developing ways to evaluate student engagement and performance through the analysis of the products that students submit online in response to particular science and engineering challenges. Students can also gain extra credit at school for their participation in the Curiosity Machine activities. The materials that the Curiosity Machine activities and challenges use are those that are commonly available to families, and the project provides access to mobile technology to facilitate participation by families. Student access to out of school science and engineering experiences is limited by the resources in terms of time and availability science centers have available. This project develops the resources and tools to bridge the in-school and out of school activities for students through the use of videos and online participation in ways that expand the opportunity of students from underserved populations to continue to engage in substantive science and engineering experiences beyond what they might get during an intermittent visit to a science center. The research and evaluation that is part of this study provides information about how new forms of extrinsic motivation might be used to support student engagement and persistence in learning about science and engineering.
DATE: -
TEAM MEMBERS: Tara Chklovski
resource project Media and Technology
Tornado Alley is a large-format 2D/3D film and comprehensive outreach program exploring the science behind severe weather events. The project focuses on cutting-edge developments in the fields of meteorology and earth science, demonstrating weather monitoring technologies. The project spotlights the current research of the VORTEX 2 (V2) project--the most ambitious effort ever to understand the origins, structure and evolution of tornadoes. The principle target audiences are science museum audiences, with additional special attention to under-served, rural mid-western communities, which will be served by digital 3D screenings. The film will be produced by Graphic Films and Giant Screen Films and distributed by Giant Screen Films. The Franklin Institute will create and manage outreach to professional audiences. Informal Learning Solutions will conduct formative evaluation; RMC Research Corporation will conduct summative evaluation of the project. The film, produced by Paul Novros (PI) and directed by Sean Casey, will collaborate closely with the V2 team, led by Dr. Josh Wurman, and consult with the project advisors to assure clarity and accuracy of the science being presented. A distance-learning initiative to serve educators--both formal and informal--will be managed by Karen Elinich (co-PI) of The Franklin Institute. The project's innovative outreach strategies leverage the mobility of the tornado intercept vehicle (TIV) built by Sean Casey, and the Doppler on Wheels and MGAUS (weather balloon vehicles) to bring scientists and weather-monitoring technology into direct contact with audiences. Outreach to underserved audiences, especially rural audiences, will provide opportunities for interactions with V2 PIs and their students, who serve as role models in science careers. In addition, cyber infrastructure will allow groups of educators to interact remotely with V2 researchers and experience visualizations of weather data. The film and ancillary materials will be translated into Spanish. The project serves as a model for the dissemination of the methods and results of a specific major NSF hard-science research endeavor to the general public through ISE products and activities. The goal of the project is for the audience to increase their knowledge and understanding of the scientific process, learn what meteorologists do, what technologies are used in meteorology and weather science and the factors and forces in meteorological events. It is intended that young audience members will also develop and interest in weather science and potential careers in science and engineering. In the first five years of the film\'s release, the audience is anticipated at 7 million plus. In addition, the live outreach events are expected to engage approximately 40,000-60,000 individuals.
DATE: -
TEAM MEMBERS: Paul Novros Karen Elinich
resource project Media and Technology
The ScienceMakers: African Americans and Scientific Innovation is a three-year project designed to increase awareness of the contributions of African American scientists, raise awareness of STEM careers, and increase understanding of STEM concepts through the creation of education, media, and career resources. The project team is supplemented with an extensive advisory board of STEM education, museum, and community professionals, as well as representatives from partnering science centers. Project partners include the St. Louis Science Center, Liberty Science Center, New York Hall of Science, Pacific Science Center, Franklin Institute, COSI Columbus, Lawrence Hall of Science, SciWorks, Detroit Science Center, and MOSI Chicago. Additional collaborators include middle and high schools with high minority populations. Project deliverables include a fully accessible multi-media archive of video oral histories of 180 African American scientists and web resources and contests utilizing Web 2.0 and 3.0 applications such as social networking tools that foster engagement and build community around the ScienceMakers. Public programs for youth and adults at science museums, after-school programs, and community organizations highlight African American contributors, and encourage interest in science and science careers and the ScienceMakers DVD Toolkit expand the reach of this innovative project. Intended impacts for youth and adults consist of increased awareness of STEM concepts and career options, exposure to African American scientists, awareness of the contributions of minority scientists, and 21st century skills. Intended impacts on professional audiences include increased awareness and understanding of STEM careers and workforce diversity, 21st century skills, and STEM career options. The project evaluation, conducted by Knight-Williams Research Communications, utilizes a mixed-methods approach. The evaluation assesses the impact of the oral history archive, public programs, and other deliverables on public and professional audiences' knowledge, interest, and awareness of the contributions of African American scientists, STEM concepts, and STEM careers. The evaluation also includes an ethnography which examines factors that contribute to success in STEM careers by African-American scientists. The ScienceMakers significantly expands the world\'s largest searchable oral history archive and may have an enduring impact on research and practice in the field of informal science education. The project has the potential to enrich programs and exhibits, while raising awareness of the contributions of African-American scientists among informal science education professionals and the general public.
DATE: -
TEAM MEMBERS: Julieanna Richardson Alison Bruzek
resource research Media and Technology
Using data from interviews with 133 physicists and biologists working at elite research universities in the United States, we analyze narratives of outreach. We identify discipline-specific barriers to outreach and gender-specific rationales for commitment. Physicists view outreach as outside of the scientific role and a possible threat to reputation. Biologists assign greater value to outreach, but their perceptions of the public inhibit commitment. Finally, women are more likely than men to participate in outreach, a commitment that often results in peer-based informal sanctions. The study
DATE:
TEAM MEMBERS: David Johnson Anne Ecklund Anne Lincoln
resource project Media and Technology
This project supports the development of technological fluency and understanding of STEM concepts through the implementation of design collaboratives that use eCrafting Collabs as the medium within which to work with middle and high school students, parents and the community. The researchers from the University of Pennsylvania and the Franklin Institute combine expertise in learning sciences, digital media design, computer science and informal science education to examine how youth at ages 10-16 and families in schools, clubs, museums and community groups learn together how to create e-textile artifacts that incorporate embedded computers, sensors and actuators. The project investigates the feasibility of implementing these collaboratives using eCrafting via three models of participation, individual, structured group and cross-generational community groups. They are designing a portal through which the collaborative can engage in critique and sharing of their designs as part of their efforts to build a model process by which scientific and engineered product design and analysis can be made available to multiple audiences. The project engages participants through middle and high school elective classes and through the workshops conducted by a number of different organizations including the Franklin Institute, Techgirlz, the Hacktory and schools in Philadelphia. Participants can engage in the eCrafting Collabs through individual, collective and community design challenges that are established by the project. Participants learn about e-textile design and about circuitry and programming using either ModKit or the text-based Arduino. The designs are shared through the eCrafting Collab portal and participants are required to provide feedback and critique. Researchers are collecting data on learner identity in relation to STEM and computing, individual and collective participation in design and student understanding of circuitry and programming. The project is an example of a scalable intervention to engage students, families and communities in developing technological flexibility. This research and development project provides a resource that engages students in middle and high schools in technology rich collaborative environments that are alternatives to other sorts of science fairs and robotic competitions. The resources developed during the project will inform how such an informal/formal blend of student engagement might be scaled to expand the experiences of populations of underserved groups, including girls. The study is conducting an examination of the new types of learning activities that are multiplying across the country with a special focus on cross-generational learning.
DATE: -
TEAM MEMBERS: Yasmin Kafai Karen Elinich Orkan Telhan
resource research Media and Technology
At first glance, public knowledge of climate science appears encouraging. When prompted, most people can correctly identify some of the contributors to climate change. But they are much less likely to do so when they are not shown a checklist of possible causes. This study examined public understanding of two commonly used terms: “global warming” and “climate change.” The findings have important implications for informal science educators seeking to develop effective programmes and exhibitions on climate science.
DATE:
TEAM MEMBERS: Heather King
resource project Media and Technology
Following on the outcomes of an NSF-funded conference to this project's principal investigator, a team of educators, scientists, and communication experts from the University of Massachusetts Lowell, University of Massachusetts Boston, Hofstra University, the Boston Museum of Science and other professionals is implementing a full-scale development project to investigate the impact of an Out-of-Home Multi-Media (OHMM) exhibit on adults riding Boston's subway system (the "T"). The project's goal is to design, implement, and study the efficacy of an OHMM model for free-choice science learning about our changing climate. A rotating exhibit of twelve specially designed placards, posters, as well as virtual, web-based learning resources linked to the exhibit content will potentially engage over 420,000 adult riders per day along two of the T's four lines. Wireless access throughout light rail systems and the rise of smart phones represent a confluence of factors making an innovative form of engagement possible. The work is positioned to test this new model for informal science education and potentially could be expanded in Boston and into other cities around the country.
DATE: -
TEAM MEMBERS: David Lustick David Rabkin Jill Lohmeier Rick Wilson
resource project Media and Technology
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE: -
TEAM MEMBERS: WGBH Educational Foundation Paula Apsell