Skip to main content

Community Repository Search Results

resource evaluation Public Programs
DiscoverE hired Concord Evaluation Group (CEG) to conduct an independent evaluation of the Future City program. Future City has been operating since 1992. According to DiscoverE, the Future City program is “a national, project-based learning experience where students in 6th, 7th, and 8th grade imagine, design, and build cities of the future. Students work as a team with an educator and engineer mentor to plan cities using SimCityTM software; research and write solutions to an engineering problem; build tabletop scale models with recycled materials; and present their ideas before judges at
DATE:
TEAM MEMBERS: Christine Paulsen
resource evaluation Public Programs
Future City, operating since 1992, is “a national, project-based learning experience where students in sixth, seventh, and eighth grade imagine, design, and build cities of the future. Students work as a team with an educator and engineer mentor to plan cities using SimCityTM software, research and write solutions to an engineering problem, build tabletop scale models with recycled materials, and present their ideas before judges at regional competitions in January. Regional winners represent their region at the National Finals in Washington, DC in February. Future City’s cross-curricular
DATE:
TEAM MEMBERS: Christine Paulsen
resource project Informal/Formal Connections
This Innovations in Development project aims to foster the development of STEM identity among a diverse group of middle school students and, in turn, motivate them to pursue in STEM interests and careers. Vegas STEM Lab, led by a team of investigators from the University of Nevada, Las Vegas, will employ a mix of online and on-site activities to introduce students to engineering methods in the context of the entertainment and hospitality (E&H) industry that is the lifeblood of Las Vegas. Investigators will collaborate with local resorts, multimedia designers, and arts institutions to offer field experiences for students to interview, interact with, and learn from local experts. The Lab will help youth overcome prevailing beliefs of STEM as boring and difficult, boost their confidence as STEM-capable individuals, and expose them to the exciting STEM careers available in their hometown. UNLV engineering undergrads will serve as near-peer mentors to the middle school students, guiding them through Lab activities and acting as role models. Investigators will measure student learning and engagement over the course of the Vegas STEM Lab experience with the aim of understanding how the Lab model—with its rich set of activities and interpersonal interactions set in the local E&H industry—can cultivate STEM identity development and encourage students to pursue STEM pathways. Despite the project’s hyperlocal focus on the Las Vegas community, if successful, other cities and towns may learn from and adapt the Lab model for use in their youth development programs.

Vegas STEM Lab will provide online materials for students’ STEM learning during the academic year followed by on-site visits and hands-on project development during a three-week summer experience. The Lab will run for three years with cohorts of 40 students each (N=120) with the aim of iteratively improving its activities and outcomes from year to year. The local school district will help recruit middle school students who have demonstrated low interest in STEM to participate in the Lab, ensuring that participants reflect the demographic makeup of the Las Vegas community in terms of race and ethnicity, socio-economic status, and gender. Summer activities will take students behind the scenes of the city’s major E&H venues; investigate the workings of large-scale displays, light shows, and “smart hospitality” systems; and then build their own smaller scale engineering projects. Investigators will employ the Dynamic Systems Model of Role Identity (DSMRI) framework to study how intentionally designed Lab experiences shape students’ understanding of themselves, their future aspirations, and their grasp of the scientific enterprise. Summer activities will be integrated into the online learning platform at the end of each year of Vegas STEM Lab, and in the final year of the project, workshops will train local educators to use the platform in either formal or informal learning settings. Materials and research findings produced through this work will be disseminated to middle school teachers and afterschool care providers, and shared with researchers through academic publications and conferences.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Emma Regentova Venkatesan Muthukumar Jonathan Hilpert Si Jung Kim
resource research Informal/Formal Connections
Many studies have examined the impression that the general public has of science and how this can prevent girls from choosing science fields. Using an online questionnaire, we investigated whether the public perception of several academic fields was gender-biased in Japan. First, we found the gender-bias gap in public perceptions was largest in nursing and mechanical engineering. Second, people who have a low level of egalitarian attitudes toward gender roles perceived that nursing was suitable for women. Third, people who have a low level of egalitarian attitudes perceived that many STEM
DATE:
TEAM MEMBERS: Yuko Ikkatai Azusa Minamizaki Kei Kano Atsushi Inoue Euan McKay Hiromi M. Yokoyama
resource research Public Programs
Using their imagination and creativity, inventors have made significant contributions to our world throughout the course of human history. In recent times, a growing community has responded to the need for more intensive research on Invention Education and within the last several years has begun organizing itself around collaborative action that will accelerate the uptake and practice of Invention Education. The purpose of this document is to provide a comprehensive community-driven framework and set of principles for Invention Education that can support its growth within formal and informal
DATE:
TEAM MEMBERS: Erin Tochen
resource research Public Programs
The Researching Invention Education white paper compiles contributions from a community of individuals and organizations working in Invention Education (IvE) in the United States. IvE is a term that refers to the practice of teaching students how to problem-solve and think like inventors in order to become positive change-makers in the world. The paper was written by researchers interested in IvE who attended the 2018 InventEd convening hosted by The Lemelson Foundation. The group worked together for a year to publish their findings that were then uncovered at the 2019 InventEd convening in
DATE:
TEAM MEMBERS: Audra Skukauskaite Stephanie Couch Leslie Flynn
resource research Public Programs
This paper examines the differences and challenges encountered when trying to create informal blended (virtual and hands-on) engineering design STEM activities. It contrasts the creation of STEM activities for formal and informal learning environments, stressing that the differences extend far beyond the length of the activity or depth of any learning goals. The discussion begins with an examination of differences between the two learning environments that need to be taken into consideration. These differences include the physical environments, organizational structures, and the goals or
DATE:
resource research Public Programs
Engaging with Tinkering is a highly stimulating and complex experience and invites rich reflections from museum practitioners and teachers. "Tinkering as an inclusive approach for building STEM identity and supporting students facing disadvantage or with low science capital” presents the reflective practice process and tools designed by the "Tinkering EU: Building Science Capital for All" project aiming to understand in more depth the potential impact of using a Tinkering approach with students facing disadvantage. Using tools specifically designed to help teachers observe their students
DATE:
TEAM MEMBERS: Emily Harris Mark Winterbottom MARIA XANTHOUDAKI
resource project Public Programs
The goal of the National Science Foundation?s Research Coordination Network (RCN) program is to advance a field or create new directions in research or education by supporting groups of investigators to communicate and coordinate their research, training and educational activities across disciplinary, organizational, geographic and international boundaries. This RCN will bring together scholars and practitioners working at the intersection of equity and interdisciplinary making in STEM education. Making is a culture that emphasizes interest-driven learning by doing within an informal, peer-led and creative social environment. Hundreds of maker spaces and maker-oriented classroom pedagogies have developed across the country. Maker spaces often include digital technologies such as computer design, 3-D printers, and laser cutters, but may also include traditional crafts or a variety of artist-driven creations. The driving purpose of the project is to collectively broaden STEM-focused maker participation in the United States through pursuing common research questions, sharing resources, and incubating emergent inquiry and knowledge across multiple working sites of practice. The network aims to build capacity for research and knowledge, building in consequential and far-reaching mechanisms to leverage combined efforts of a core group of scholars, practitioners, and an extended network of formal and informal education partners in urban and rural sites serving people from groups underrepresented in STEM. Maker learning spaces can be particularly fruitful spaces for STEM learning toward equity because they foster interest-driven, collective, and community-oriented learning in making for social and community change. The network will be led by a team of multi-institutional and multi-disciplinary researchers from different geographic regions of the United States and guided by a steering committee of prominent researchers and practitioners in making and equity will convene to facilitate network activities.

Equitable processes are rooted in a commitment to understand and build on the skills, practices, values, and knowledge of communities marginalized in STEM. The research network aims to fill in gaps in current understandings about making and equity, including the many ways different projects define equity and STEM in making. The project will survey the existing research terrain to develop a dynamic and cohesive understanding of making that connects to learners' STEM ideas, communities, and historical ways of making. Additionally, the network will collaboratively develop central research questions for network partners. The network will create a repository for ethical and promising practices in community-based research and aggregate data across sites, among other activities. The network will support collaboration across a multiplicity of making spaces, research institutions, and community organizations throughout the country to share data, methodologies, ways of connecting to local communities and approaches to robust integration of STEM skills and practices. Project impacts will include new research partnerships, a dissemination hub for research related to making and equity, professional development for researchers and practitioners, and leveraging collective research findings about making values and practices to improve approaches to STEM-rich making integration in informal learning environments. The project is funded by NSF's Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of settings. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Maria Olivares Eli Tucker-Raymond Edna Tan Jill Castek Cynthia Graville
resource research Exhibitions
The data collection procedure and process is one of the most critical components in a research study that affects the findings. Problems in data collection may directly influence the findings, and consequently, may lead to questionable inferences. Despite the challenges in data collection, this study provides insights for STEM education researchers and practitioners on effective data collection, in order to ensure that the data is useful for answering questions posed by research. Our engineering education research study was a part of a three-year, NSF funded project implemented in the Midwest
DATE:
TEAM MEMBERS: Ibrahim Yeter Anastasia Marie Rynearson Hoda Ehsan Annwesa Dasgupta Barbara Fagundes Muhsin Meneske Monica Cardella
resource research Exhibitions
Given the growth of technology in the 21st century and the growing demands for computer science skills, computational thinking has been increasingly included in K-12 STEM (Science, Technology, Engineering and Mathematics) education. Computational thinking (CT) is relevant to integrated STEM and has many common practices with other STEM disciplines. Previous studies have shown synergies between CT and engineering learning. In addition, many researchers believe that the more children are exposed to CT learning experiences, the stronger their programming abilities will be. As programming is a
DATE:
TEAM MEMBERS: Hoda Ehsan Tikyna Dandridge Ibrahim Yeter Monica Cardella
resource project Exhibitions
Computational Thinking (CT) is a relatively new educational focus and a clear need for learners as a 21st century skill. This proposal tackles this challenging new area for young learners, an area greatly in need of research and learning materials. The Principal Investigators will develop and implement integrated STEM+C museum exhibits and integrate CT in their existing engineering design based PictureSTEM curriculum for K-2 students. They will also pilot assessments of the CT components of the PictureSTEM curriculum. This work will make a unique contribution to the available STEM+C learning materials and assessments. There are few such materials for the kindergarten to second grade (K-2) population they will work with. They will research the effects of the curriculum and the exhibits with a mixed methods approach. First, they will collect observational data and conduct case studies to discover the important elements of an integrated STEM+C experience in both the formal in-school setting with the curriculum and in the informal out-of-school setting with families interacting with the museum exhibits. This work will provide a novel way to understand the important question of how in- and out-of-school experiences contribute to the development of STEM and CT thinking and learning. Finally, they will collect data from all participants to discover the ways that their activities lead to increases in STEM+C knowledge and interest.

The Principal Investigators will build on an integrated STEM curriculum by integrating CT and develop integrated museum exhibits. They base both activities on engineering design implemented through challenge based programming activities. They will research and/or develop assessments of both STEM+C integrated thinking and CT. Their research strategy combines Design Based Research and quantitative assessment of the effectiveness of the materials for learning CT. In the first two years of their study, they will engage in iterations on the design of the curriculum and the exhibits based on observation and case-study data. There will be 16 cases that draw from each grade level and involve data collection for the case student in both schools and museums. They will also use this work to illuminate what integrated STEM+C thinking and learning looks like across formal and informal learning environments. Based in some part on what they discover in this first phase, they will conduct the quantitative assessments with all (or at least most) students participating in the study
DATE: -
TEAM MEMBERS: Tamara Moore Monica Cardella Senay Purzer Sean Brophy Morgan Hynes Tamara Moore Hoda Ehsan