Skip to main content

Community Repository Search Results

resource project Media and Technology
C-RISE will create a replicable, customizable model for supporting citizen engagement with scientific data and reasoning to increase community resiliency under conditions of sea level rise and storm surge. Working with NOAA partners, we will design, pilot, and deliver interactive digital learning experiences that use the best available NOAA data and tools to engage participants in the interdependence of humans and the environment, the cycles of observation and experiment that advance science knowledge, and predicted changes for sea level and storm frequency. These scientific concepts and principles will be brought to human scale through real-world planning challenges developed with our city and government partners in Portland and South Portland, Maine. Over the course of the project, thousands of citizens from nearby neighborhoods and middle school students from across Maine’s sixteen counties, will engage with scientific data and forecasts specific to Portland Harbor—Maine’s largest seaport and the second largest oil port on the east coast. Interactive learning experiences for both audiences will be delivered through GMRI’s Cohen Center for Interactive Learning—a state-of-the-art exhibit space—in the context of facilitated conversations designed to emphasize how scientific reasoning is an essential tool for addressing real and pressing community and environmental issues. The learning experiences will also be available through a public web portal, giving all area residents access to the data and forecasts. The C-RISE web portal will be available to other coastal communities with guidance for loading locally relevant NOAA data into the learning experience. An accompanying guide will support community leaders and educators to embed the interactive learning experiences effectively into community conversations around resiliency. This project is aligned with NOAA’s Education Strategic Plan 2015-2035 by forwarding environmental literacy and using emerging technologies.
DATE: -
TEAM MEMBERS: Leigh Peake
resource project Media and Technology
One common barrier to STEM engagement by underserved and underrepresented communities is a feeling of disconnection from mainstream science. This project will involve citizen scientists in the collection, mapping, and interpretation of data from their local area with an eye to increasing STEM engagement in underrepresented communities. The idea behind this is that science needs to start at home, and be both accessible and inclusive. To facilitate this increased participation, the project will develop a network of stakeholders with interests in the science of coastal environments. Stakeholders will include members of coastal communities, academic and agency scientists, and citizen science groups, who will collectively and collaboratively create a web-based system to collect and view the collected and analyzed environmental information. Broader impacts include addressing the STEM barriers to those who reside in the coastal environment but who are underrepresented in STEM education, vocations and policy-making. These include tribal communities (racial and ethnic inclusion), fishery communities (inclusion of communities of practice), and rural communities without direct access to colleges or universities. This project will create a physical, a social, and a virtual, environment where all participants have an equal footing in the processes of "doing science" - the Coastal Almanac. The Almanac is simultaneously a network of individuals and organizations, and a web-based repository of coastal data collected through the auspices of the network. During the testing phase, the researchers will implement the "rules of engagement" through multiple interaction pathways in the growing Coastal Almanac network: increases in rigorous citizen science, development of specific community-scientist partnerships to collect and/or use Almanac data, development of K-12 programs to collect and/or use Almanac data. The proposed work will significantly scale up citizen science and community-based science programs on the West Coast, broadening participation by targeting members of coastal communities with limited access to mainstream science, including participants from non-STEM vocations, and Native Americans. The innovation of the Coastal Almanac is in allowing the process of deepening involvement in science, and through that process increasing agency of community members to be bona fide members of the science team, to evolve organically, in the manner dictated by community members and the situation, rather than a priori by the project team and mainstream science. The project has the potential in the long-term to increase participation in marine science education, workforce, and policy-making by underrepresented groups resident in the coastal environment. Contributions by project citizen scientists will also provide valuable data to mainstream science and to resource management efforts.
DATE: -
TEAM MEMBERS: Julia Parrish Marco Hatch Selina Heppell
resource research Media and Technology
Science is a way of knowing about the world. At once a process, a product, and an institution, science enables people to both engage in the construction of new knowledge as well as use information to achieve desired ends. Access to science—whether using knowledge or creating it—necessitates some level of familiarity with the enterprise and practice of science: we refer to this as science literacy. Science literacy is desirable not only for individuals, but also for the health and well- being of communities and society. More than just basic knowledge of science facts, contemporary
DATE:
TEAM MEMBERS: Catherine Snow Kenne Dibner
resource research Media and Technology
Through this review of research on public engagement with science, Feinstein, Allen, and Jenkins advocate supporting students as “competent outsiders”—untrained in formal sciences, yet using science in ways relevant to their lives. Both formal and informal settings can be well suited for work in which students translate scientific content and practices into meaningful actions.
DATE:
TEAM MEMBERS: Elaine Klein
resource project Media and Technology
The University of Chicago's Yerkes Observatory, the National Radio Astronomy Observatory, the University of North Carolina, the Astronomical Society of the Pacific, and 4-H are collaborating to provide professional development to 180 4-H leaders and other informal science educators, and engage 1,400 middle school youth in using research-grade robotic telescopes and data analysis tools to explore the Universe. Youth participating in 4H-based out-of-school programs in Wisconsin, West Virginia and North Carolina are learning about the universe and preparing for STEM careers by conducting authentic astronomy research, completing astronomy-related hands-on modeling activities, interacting with astronomers and other professionals who are part of the Skynet Robotic Telescope Network, and interacting with other youth who part of the Skynet Junior Scholars virtual community. The project is innovative because it is providing a diverse community of 4-H youth (including sight- and hearing-challenged youth and those from underrepresented groups) with opportunities to use high-quality, remotely located, Internet-controlled telescopes to explore the heavens by surveying galaxies, tracking asteroids, monitoring variable stars, and learn about the nature and methods of science. Deliverables include (1) online access to optical and radio telescopes, data analysis tools, and professional astronomers, (2) an age-appropriate web-based interface for controlling remote telescopes, (3) inquiry-based standards-aligned instructional modules, (4) face-to-face and online professional development for 4-H leaders and informal science educators, (5) programming for youth in out-of-school clubs and clubs, (6) evaluation findings on the impacts of program activities on participants, and (7) research findings on how web-based interactions between youth and scientists can promote student interest in and preparedness for STEM careers. The evaluation plan is measuring the effectiveness of program activities in (1) increasing youths' knowledge, skills, interest, self-efficacy, and identity in science, including youth who are sight- and hearing-impaired, (2) increasing educators' competency in implementing inquiry-based instruction and their ability to interact with scientists, and (3) increasing the number of Skynet scientists who are involved in education and public outreach.
DATE: -
TEAM MEMBERS: Richard Kron Suzanne Gurton Daniel Reichart Sue Ann Heatherly
resource project Media and Technology
In Defense of Food (IDOF) is a media and outreach project based on Michael Pollan's best-selling book of the same title. Through the lens of food science, IDOF is designed to engage diverse audiences in learning about: (1) how science research is conducted, (2) how research findings are used in media, marketing, and public policy, and (3) how to apply food science research in everyday life. IDOF will be created by Kikim Media, an independent production company, broadcast and distributed by PBS and supported by an extensive outreach campaign and interactive website. The project's educational materials will be developed, in part, by the Teacher's College at Columbia University's Center for Food and Nutrition, with dissemination supported by the Coalition for Science After School and by Tufts University's Healthy Kids Out of School initiative, which involves nine of the leading out of school time (OST) organizations, such as Girl Scouts USA, and the National Urban League. The project advisory committee includes highly respected researchers in food, nutrition, and health. IDOF will use an integrated strategy of learning resources, combining a television documentary with online/social media, community outreach, and youth activities. Knight Williams Research Communications will conduct formative and summative evaluation of all major components of the project. The results will advance the informal science community's understanding of how the combination of a documentary with outreach, website/social media, and afterschool activities impacts motivation and learning. The evaluation study will pay special attention to the degree to which participation in the community events, social media/website, and afterschool activities motivates deeper or extended engagement with the subject. Project evaluation results and educational resources will be widely disseminated to the informal science community. IDOF includes a two-hour documentary film that will be produced in both English and Spanish; a community-level outreach campaign focused on reaching underserved audiences who may not watch public television; a set of activities for use in afterschool programs, youth programs and schools; and an interactive and content-rich website with tightly integrated social media tools. IDOF will be nationally broadcast by PBS; the Spanish-language version of IDOF will be broadcast by Vme Television. The ambitious IDOF educational materials and outreach campaign, combined with interactive web and social media, will reach large and diverse audiences. The intended impacts on audiences include increased knowledge and understanding of the scientific process by learning what food scientists do, what techniques they use, and how scientists arrive at their conclusions; the development of critical thinking skills audiences can use when evaluating messages about food and nutrition in media and advertising and when making decisions about what food to buy and eat; and becoming active learners and consumers regarding food. Evaluation results will be widely disseminated to science media producers and the informal science community via professional publications and presentations at conferences. The ultimate value of the In Defense of Food documentary and learning initiative will be to enhance public understanding of the crucial importance of science in people's everyday lives and in shaping dozens of daily decisions.
DATE: -
TEAM MEMBERS: Michael Schwarz
resource project Media and Technology
Iridescent is a not-for-profit company that develops and implements informal science and engineering experiences for students by facilitating the translation of the work that scientists and engineers do in a way that makes that work accessible to families. The proposal expands the Iridescent outreach activities funded by the Office of Naval Research, to provide a blended combination of in-person and online support to the families of underrepresented populations. The project is producing twenty videos of scientists and engineers presenting their research that are closely aligned with one hundred scientific inquiry and engineering design-based experiments and lesson plans. These digital resources, collectively called the Curiosity Machine, provide opportunities for parents and children to engage in scientific inquiry and engineering design in multiple face-to-face and online environments, including mobile technologies. The evaluation findings from this project provide a model of how to engage STEM education practitioners, teachers and online communities, to substantively connect underserved communities, in both informal and more formal learning environments to develop experiences with engineering design and to improve students' perspectives about and motivations to prepare for STEM careers. The Curiosity Machine portal is designed to present scientists and engineers explaining the work that they do in a way that makes it accessible to parents and students. Iridescent is working at three sites across the country in South Los Angeles, the South Bronx in New York City, and San Francisco. Students and their families have multiple access points to the science and engineering videos and materials through after school activities, Family Science Nights and summer camps. The project is piloting the use of electronic badges, similar to those offered in the Boy and Girl Scouts as a mechanism to enhance the engagement and persistence of students in the online activities. The project is developing ways to evaluate student engagement and performance through the analysis of the products that students submit online in response to particular science and engineering challenges. Students can also gain extra credit at school for their participation in the Curiosity Machine activities. The materials that the Curiosity Machine activities and challenges use are those that are commonly available to families, and the project provides access to mobile technology to facilitate participation by families. Student access to out of school science and engineering experiences is limited by the resources in terms of time and availability science centers have available. This project develops the resources and tools to bridge the in-school and out of school activities for students through the use of videos and online participation in ways that expand the opportunity of students from underserved populations to continue to engage in substantive science and engineering experiences beyond what they might get during an intermittent visit to a science center. The research and evaluation that is part of this study provides information about how new forms of extrinsic motivation might be used to support student engagement and persistence in learning about science and engineering.
DATE: -
TEAM MEMBERS: Tara Chklovski
resource research Media and Technology
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. This project seeks to improve public engagement in climate communication by broadcast meteorologists, using scientific methods to identify probable causes for their skepticism and/or reticence, and to test the efficacy of proposed solutions.
DATE:
TEAM MEMBERS: P. Thompson Davis
resource research Media and Technology
This poster was presented at the 2014 AISL PI Meeting held in Washington, DC. It describes a project that uses museum-based exhibits, girls' activity groups, and social media to enhance participants' engineering-related interests and identities.
DATE:
resource research Media and Technology
The Jackprot is a didactic slot machine simulation that illustrates how mutation rate coupled with natural selection can interact to generate highly specialized proteins. Conceptualized by Guillermo Paz-y-Miño C., Avelina Espinosa, and Chunyan Y. Bai (New England Center for the Public Understanding of Science, Roger Williams University and the University of Massachusetts, Dartmouth), the Jackprot uses simplified slot-machine probability principles to demonstrate how mutation rate coupled with natural selection suffice to explain the origin and evolution of highly specialized proteins. The
DATE:
TEAM MEMBERS: New England Center for the Public Understanding of Science Avelina Espinosa Guillermo Paz-y-Mino-C
resource project Media and Technology
The goal of this project is to advance STEM education in Hawaii by creating a series of educational products, based on NASA Earth Systems Science, for students (grades 3-5) and general public. Bishop Museum (Honolulu HI) is the lead institution. NASA Goddard Space Flight Center is the primary NASA center involved in the project. Partners include Hawaii Department of Education and a volunteer advisory board. The evaluation team includes Doris Ash Associates (UC Santa Cruz) and Wendy Meluch of Visitor Studies Inc. Key to this project: the NASA STEM Cohort, a team of six current classroom teachers whom the Museum will hire. The cohort will not only develop curricula on NASA earth science systems but also provide guidance to Bishop Museum on creating museum educational programming that best meets the needs of teachers and students. The overall goal of Celestial Islands is to advance STEM education in Hawaii through the use of NASA Earth Science Systems content. Products include: 1) combined digital planetarium/Science on a Sphere® program; 2) traveling version of that program, using a digital planetarium and Magic Planet; 3) curricula; 4) new exhibit at Bishop Museum on NASA ESS; 5) 24 teacher workshops to distribute curricula; 6) 12 community science events. The project's target audience is teachers and students in grades 3-5. Secondary audiences include families and other members of the general public. A total of 545,000 people will be served, including at least 44,000 students.
DATE: -
TEAM MEMBERS: Blair Collis Mike Shanahan
resource project Media and Technology
The Magnet Lab has a strong commitment to education. Through the Center for Integrating Research & Learning, the lab supports educational programming at all academic levels: K-12, technical, undergraduate, graduate and postdoctoral. Please explore the links listed to the left to find out more about the depth of our educational resources for the community, for teachers and for students as well as our unique research offerings. Our programs are designed to excite and educate students, teachers and the general public about science, technology and the world around them. All of our programs are developed in close collaboration with research scientists and educators. Housed at and partly funded by the MagLab, the Center is uniquely positioned to take advantage of the excellent resources, connections, world-class facilities and cutting-edge science the lab has to offer. We also receive generous support from the National Science Foundation and the State of Florida. The Center maintains a rigorous research agenda designed to investigate how Center programs and materials affect teachers and students. Our Mission Statement is to expand scientific literacy and to encourage interest in and the pursuit of scientific studies among educators and students of all ages through connections between the National High Magnetic Field Laboratory and the National Science Foundation, the community of Tallahassee, the State of Florida and the nation.
DATE:
TEAM MEMBERS: Roxanne Hughes