Skip to main content

Community Repository Search Results

resource project Public Programs
The goals of this proposal are: 1) to provide opportunities for underrepresented students to consider careers in basic or clinical research by exciting them through an educational Citizen Science research project; 2) to provide teachers with professional development in science content and teaching skills using research projects as the infrastructure; and 3) to improve the environments and behaviors in early childcare and education settings related to healthy lifestyles across the state through HSTA students Citizen Science projects. The project will complement or enhance the training of a workforce to meet the nation’s biomedical, behavioral and clinical research needs. It will encourage interactive partnerships between biomedical and clinical researchers,in-service teachers and early childcare and education facilities to prevent obesity.

Specific Aim I is the Biomedical Summer Institute for Teachers led by university faculty. This component is a one week university based component. The focus is to enhance teacher knowledge of biomedical characteristics and problems associated with childhood obesity, simple statistics, ethics and HIPAA compliance, and the principles of Citizen Science using Community Based Participatory Research (CBPR). The teachers, together with the university faculty and staff, will develop the curriculum and activities for Specific Aim II.

Specific Aim II is the Biomedical Summer Institute for Students, led by HSTA teachers guided by university faculty. This experience will expose 11th grade HSTA students to the biomedical characteristics and problems associated with obesity with a focus on early childhood. Students will be trained on Key 2 a Healthy Start, which aims to improve nutrition and physical activity best practices, policies and environments in West Virginia’s early child care and education programs. The students will develop a meaningful project related to childhood obesity and an aspect of its prevention so that the summer institute bridges seamlessly into Specific Aim III.

Specific Aim III is the Community Based After School Club Experiences. The students and teachers from the summer experience will lead additional interested 9th–12th grade students in their clubs to examine their communities and to engage community members in conducting public health intervention research in topics surrounding childhood obesity prevention through Citizen Science. Students and teachers will work collaboratively with the Key 2 a Healthy Start team on community projects that will be focused on providing on-going technical assistance that will ultimately move the early childcare settings towards achieving best practices related to nutrition and physical activity in young children.
DATE: -
TEAM MEMBERS: Ann Chester
resource project Public Programs
The NIH Science Education Partnership Award (SEPA) program of Emory University endeavors to use an over-arching theme of citizen science principles to:


develop an innovative curriculum based on citizen science and experiential learning to evaluate the efficacy of informal science education in after-school settings;
promote biomedical scientific careers in under-represented groups targeting females for Girls for Science summer research experiences;
train teachers in Title I schools to implement this citizen science based curriculum; and
disseminate the citizen science principles through outreach.


This novel, experiential science and engineering program, termed Experiential Citizen Science Training for the Next Generation (ExCiTNG), encompasses community-identified topics reflecting NIH research priorities. The curriculum is mapped to Next Generation Science Standards.

A comprehensive evaluation plan accompanies each program component, composed of short- and/or longer-term outcome measures. We will use our existing outreach program (Students for Science) along with scientific community partnerships (Atlanta Science Festival) to implement key aspects of the program throughout the state of Georgia. These efforts will be overseen by a central Steering Committee composed of leadership of the Community Education Research Program of the Emory/Morehouse/Georgia Institute of Technology Atlanta Clinical Translational Science Institute (NIH CTSA), the Principal Investigators, representatives of each program component, and an independent K–12 STEM evaluator from the Georgia Department of Education.

The Community Advisory Board, including educators, parents, and community members, will help guide the program’s implementation and monitor progress. A committee of NIH-funded investigators, representing multiple NIH institutes along with experienced science writers, will lead the effort for dissemination and assure that on-going and new NIH research priorities are integrated into the program’s curriculum over time.
DATE: -
TEAM MEMBERS: Adam Marcus Theresa Gillespie
resource project Professional Development, Conferences, and Networks
This NSF INCUDES Design and Development Launch Pilot will increase the recruitment, retention, and matriculation of racial and ethnic minorities in STEM Ph.D. programs contributing to hazards and disaster research. Increasing STEM focused minorities on hazards mitigation, and disaster research areas will benefit society and contribute to the achievements of specific, desired societal outcomes following disasters. The Minority SURGE Capacity in Disasters (SURGE) launch pilot will provide the empirical research to identify substantial ways to increase the underrepresentation of minorities in STEM disciplines interested in hazards mitigation and disaster research. Increasing the involvement of qualified minorities will help solve the broader vulnerability concerns in these communities and help advance the body of knowledge through the diversity of thought and creative problem solving in scholarship and practice. Utilizing workshops and a multifaceted mentorship program SURGE creates a new model that addresses the diversity concerns in both STEM and disaster fields, and make American communities more resilient following natural disasters. This project will be of interest to policymakers, educators and the general public.

The Minority SURGE Capacity in Disasters (SURGE) NSF INCLUDES Design and Development Launch Pilot will enhance the social capital of racial and ethnic minority communities by increasing their networks, connections, and access to disaster management decision-making among members of their community from STEM fields. The four-fold goals of SURGE are to: (1) increase the number of minority graduate researchers in STEM fields with a disaster focus; (2) develop and guide well-trained, qualified disaster scholars from STEM fields; (3) provide academic and professional mentorship for next generation minority STEM scholars in hazards mitigation and disaster research; and (4) develop professional and research opportunities that involve outreach and problem solving for vulnerable communities in the U.S. The SURGE project is organized as a lead-organization network through the University of Nebraska at Omaha and includes community partners. As a pilot project, SURGE participation is limited to graduate students from research-intensive universities across the country. Each student will attend workshops and training programs developed by the project leads. SURGE investigators will conduct project evaluation and assessment of their workshops, training, and mentorship projects. Results from evaluations and assessments will be presented at STEM and disaster-related conferences and published in peer-reviewed academic journals.
DATE: -
TEAM MEMBERS: DeeDee Bennett Lori Peek Terri Norton Hans Louis-Charles
resource project Public Programs
This project is a Design and Development Launch Pilot (DDLP) of the NSF INCLUDES program. The goal of the project is to enhance the knowledge and applicability of science, technology, engineering, and mathematics (STEM) for a broad cross-section of people living in the U.S,-Affiliated Pacific Islands. The focus will be on water resources, which is an extremely important topic for this region and equally relevant nationally. The project will engage local community groups and schools in water monitoring, sampling, and analysis, in order to promote the benefits of science education and careers among a population that is underrepresented in these areas. Moreover, the project will improve the capabilities of the island residents for making decisions about sustainable use and protection of these scarce resources. A functioning network will be established among the islands that will have a positive impact on the health and well-being of the residents.

This project will use water as a highly relevant topic in order to involve a wide range of individuals in both general STEM learning and the basic scientific principles as applied to water resources. Specific aspects include engaging K-12, higher education, informal educators and community members to manage water resources in a sustainable fashion that will reduce disaster risk. In addition, the project will empower local communities through water literacy to make better informed, evidence-based decisions that balance the needs of diverse stakeholder groups. The overarching goal is to further advance the inclusion of underrepresented learners in STEM fields. Benefits to society will accrue by: increasing STEM learning opportunities for ~6,500 students from underserved and underrepresented Indigenous Pacific Islanders that will enhance their eligibility for STEM careers; building community resiliency through a collective impact network to resolve emerging water crises; and fostering collaboration among different constituencies in remote communities to make better-informed decisions that reflect the needs and constraints of diverse interests.
DATE: -
TEAM MEMBERS: Ming Wei Koh Ethan Allen
resource evaluation Summer and Extended Camps
As part of a grant from the National Science Foundation, the National Federation of the Blind (NFB) developed, implemented, and evaluated the National Center for Blind Youth in Science (NCBYS), a three-year full-scale development project to increase informal learning opportunities for blind youth in STEM. Through this grant, the NCBYS extended opportunities for informal science learning for the direct benefit of blind students by conducting six NFB STEM2U regional programs included programs for blind youth, their parents/caregivers, blind teen mentors (apprentices), and museum educators.
DATE:
resource research Museum and Science Center Programs
The National Autonomous University of Mexico (UNAM) is one of the world's single largest employers of science communicators, with over 350,000 students and 40,000 staff. Its science communication activities include five museums (Universum, Museo de la Luz, the Geology Museum, Museo de la Medicina Mexicana and Musem of Geophysics), botanical gardens, as well as a wide range of cultural and outreach activities. It has several programmes for training professional science communicators. The science communication staff are spread across the campuses in Mexico City and four other cities, including
DATE:
TEAM MEMBERS: Ana Claudia Nepote Elaine Reynoso-Haynes
resource project Public Programs
The Maker movement has grown considerably over the past decade, both in the USA and internationally. Several varieties of Making have been developed, but there are still many important questions to ask and research to conduct about how different programmatic structures may relate to the potential impact Maker programs can have on individuals and communities. WestEd, in collaboration with the Lucile Packard Children's Hospital, the University of Michigan C. S. Mott Hospital Children's Hospital, and the Children's Hospital of Orange County, is conducting a year-long exploratory research study that will focus on the out-of-school learning by adolescents and young adults in children's hospitals. This research study will focus on mobile and dedicated Makerspaces in hospitals to support patients' learning. The application of Makerspaces to hospital environments is a unique opportunity to research a critical need of chronically ill individuals, i.e. to explore how Making can enhance patients' agency, creative STEM learning, and physical well-being. The proposed study is building on the prior work of the principal investigator and will: (1) examine the nature and processes of learning in children's hospitals; (2) revise the current design of the mobile Makerspace and the associated implementation model in response to variations in programmatic contexts across multiple hospital settings and disparate patients' conditions; and (3) investigate and test the effectiveness of the Makerspace approach as it relates to both patients' learning and health outcomes. The study would contribute to longer-term efforts to develop a comprehensive, scalable, and sustainable strategy to determine the programmatic viability of the mobile Makerspace approach across a more varied array of hospital settings. This project has the potential to have a much broader impact by reaching out to other isolated students beyond the hospital environment, including those in residential treatment facilities for behavioral and emotional problems, as well as those attending programs designed to help youth who have been in trouble with the law get back on track. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project's goals are to contribute to the understanding of how to: (1) describe and measure the education and health impact of mobile Makerspaces on chronically ill patients, and (2) design and sustain implementation models in various hospital settings. Since a children's hospital is a challenging context to support a patient's learning, it is not typically conducive to learning. Patients are constantly interrupted by the demands of the illness, by the strict protocols that need to be adhered to, and by the medical staff who manage their exhaustive treatment regimens. The mobile Makerspace is intended to adjust the environment in deliberate ways, allowing researchers to study and observe what kinds of learning intervention models enable youth and young adults to recapture a sense of their own agency and enable them to see themselves as creators, and makers of things that improve their own and others' lives. The project will have two strands: one on learning and one on adaptation of the model. In the learning strand, the study will investigate how engaging with the Makerspace can enhance patients' learning by provoking their sense of curiosity, encouraging them to set up and pursue personal goals via invention, and inspiring them to feel more agentive in taking charge of their learning process i.e., development of affinity for and fluency in the ways of knowing, doing and being (the epistemologies and ontologies) of engineers or scientists. In the adaptation strand, they will identify challenges and opportunities for implementing Makerspaces and develop an implementation plan that provides a process for introducing Makerspaces into hospital settings.
DATE: -
TEAM MEMBERS: Gokul Krishnan Steven Schneider
resource project Public Programs
To reach its full potential in science, technology, engineering, and mathematics (STEM), the United States must continue to recruit, prepare and maintain a diverse STEM workforce. Much work has been done in this regard. Yet, underrepresentation in STEM fields persists and is especially pronounced for Hispanic STEM professionals. The Hispanic community is the youngest and fastest growing racial/ethnic group in the United States but comprises only seven percent of the STEM workforce. More evidence-based solutions and innovative approaches are required. This project endeavors to address the challenges of underrepresentation in STEM, especially among individuals of Hispanic descent, through an innovative approach. The University of San Diego will design, develop, implement, and test a multilayered STEM learning approach specific to STEM learning and workforce development in STEM fields targeting Hispanic youth. The STEM World of Work project will explore youth STEM identity through three mechanisms: (1) an assessment of their individual interests, strengths, and values, (2) exposure to an array of viable STEM careers, and (3) engagement in rigorous hands-on STEM activities. The project centers on a youth summer STEM enrichment program and a series of follow-up booster sessions delivered during the academic year in informal contexts to promote family engagement. Paramount to this work is the core focus on San Diego's Five Priority Workforce Sectors: Advanced Manufacturing, Information and Communications Technology, Clean Energy, Healthcare, and Biotech. Few, if any, existing projects in the Advancing Informal STEM learning portfolio have explored the potential connections between these five priority workforce sectors, informal STEM learning, and identity among predominately Hispanic youth and families engaged in a year-long, culturally responsive STEM learning and workforce focused program. If successful, the model could provide a template for the facilitation of similar efforts in the future.

The STEM World of Work project will use a mixed-methods, exploratory research design to better understand the variables influencing STEM learning and academic and career choices within the proposed context. The research questions will explore: (1) the impacts of the project on students' engagement, STEM identity, STEM motivation, and academic outcomes, (2) factors that moderate these outcomes, and (3) the impact the model has on influencing youths' personal goals and career choices. Data will be garnered through cross-sectional and longitudinal surveys and reflective focus groups with the students and their parents/guardians. Multivariate analysis of variance, longitudinal modeling, and qualitative analysis will be conducted to analyze and report the data. The findings will be disseminated using a variety of methods and platforms. The broader impacts of the findings and work are expected to extend well beyond the project team, graduate student mentors, project partners, and the estimated 120 middle school students and their families from the predominately Hispanic Chula Vista Community of San Diego who will be directly impacted by the project.

This exploratory pathways project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Perla Myers Vitaliy Popov Odesma Dalrymple Yaoran Li Joi Spencer
resource project Media and Technology
As part of its overall effort to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program, seeks to advance new approaches to, and evidence-based understanding of, the design and development of science, technology, engineering, and mathematics (STEM) learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. In alignment with these aims, the STEM + Digital Literacies (STEM+L) project will investigate science fiction as an effective mechanism to attract and immerse adolescents (ages 10-13) from diverse cultural backgrounds in environmental and human health content and socio-scientific issues. This work is particularly novel, as the current knowledge base is limited, and largely addresses the high school level. Therefore, the results of the proposed effort could yield important findings regarding the feasibility of this activity as an effective platform for science learning and engagement for younger students. As such, STEM+L would not only advance knowledge in the field but would also contribute to a growing AISL portfolio on digital literacy and learning.

STEM+L is an early stage Innovations in Development project that will engage thirty middle school students in out of school time experiences. Over a twenty-four-week period, students will work collaboratively in groups in-person and online with their peers and field experts to design, develop, and produce STEM content rich, multimedia science fictions. The in-person learning experiences will take place on the University of Miami campus during the summer and academic year. Culminating activities include student presentations online and at a local Science Fiction Festival. The research component will employ an iterative, design-based approach. Four research questions will be explored: (a) How do students learn science concepts and multimodal digital literacies through participating in the STEM+L Academy? (b) How do students change their views in STEM related subject matter and in pursuing STEM related careers? (c) How do students participate in the STEM+L Academy? (d) How do we best support students' participation and learning of STEM+L in face-to-face and online environments? Data collection methods include video records, student-generated artifacts, online surveys, embedded assessments, interviews, and multimodal reflections. Comparative case analysis and a mixed methods approach will be employed. A rigorous evaluation will be conducted by a critical external review board. Inclusive and innovative dissemination strategies will ensure that the results of the research and program reach a broad range of audiences including both informal and formal STEM and literacy educators and researchers, learning scientists, local communities, and policy makers through national and international conference presentations, journal publications, Web2.0 resources, and community outreach activities.
DATE: -
TEAM MEMBERS: Ji Shen Blaine Smith
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This Change Makers project will establish Food Justice Ambassador corps across three cities in Massachusetts where youth will install, manage and learn the science and technology underlying hydroponics. The project takes a near-peer mentoring approach that empowers high school youth to take the lead in improving ethnic minority and low-income residents' access to healthy produce and to help educate middle school youth regarding the value of fresh produce in one's diet by learning the science of hydroponics. Youth will create story maps to visualize food accessibility in their communities. High school youth will work with their communities to establish hydroponic farms in middle school after-school settings. The food that is grown will be provided to the community through farmers' markets. Youth will share their work with a larger community of urban farmers at the Massachusetts Urban Farming Conference. This project seeks to understand the contribution on youth development by the model's three components: (1) STEM learning embedded in a social justice framework, (2) near-peer mentoring, and (3) youth purpose and career development. This will enable researchers to better understand how the project enables youth to learn STEM skills; apply them to a real life problem; learn the relevance of STEM skills for addressing personal, career aspiration, and social justice issues; develop a sense of purpose and aspirations related to STEM fields; and mentor other youth through the same process. The project will use a mixed-method, multi-site longitudinal study utilizing quantitative surveys, structural equation modeling, and qualitative interviews to study the intersections of the components of the project. As such, the study will address three key questions: 1) How do youth and mentors perceive and experience their roles as participants in the pedagogy? 2) What is the impact of the intervention on youth' sense of purpose, identity, career adaptability, work volition, critical consciousness, school engagement, STEM interests, and STEM intentionality? 3) What is the contribution of relational/mentoring and psychosocial/career adaptability aspects of the youths' contexts on their capacity to benefit from this program and to develop and sustain purpose and engagement in school and STEM? Most urban youth (and adults) have little knowledge of where their food comes from and have limited opportunities to learn how to grow produce as well as develop related skills that can lead to a career in a STEM field. This is particularly disconcerting as 55% of African Americans live inside central cities (90% in metropolitan areas) and over half of all Latino/as live in central cities (United States Census Bureau, 2011). This project entails the recruitment of low-income youth from populations underrepresented in science into a program where social justice concerns (food justice, food security) are illuminated, analyzed, and acted upon through the development of STEM knowledge and skills. Specifically, this project recognizes the potential for urban youth to become deeply knowledgeable citizens who can mobilize their STEM knowledge and skills to resolve social injustices such as food deserts. If successful, this project will provide a model that should be transferable to similar contexts to help broaden participation in STEM.
DATE: -
TEAM MEMBERS: George Barnett Belle Liang David Blustein
resource evaluation Exhibitions
Merging art and science, "Self Reflected" aims to communicate the incredible complexity of the neural signaling in our brains that makes us who we are. The artists, Dr. Greg Dunn and Dr. Brian Edwards, invented a novel technique called reflective microetching to simulate the microscopic behavior of neurons in the viewer’s brain as they observe this work of art. "Self Reflected" is currently on display in the Your Brain exhibit at The Franklin Institute in Philadelphia. This summative evaluation study explores museum visitors’ behavior, reactions, and learning outcomes as they interact with
DATE:
TEAM MEMBERS: Jayatri Das Alexa Beacham Rachel Swenarton
resource evaluation Informal/Formal Connections
This is the final report from the external evaluator of the project that created MedLab, an interactive learning experiences for Chicago area middle and high school students. This external evaluator's final report summarizes the outcomes and impacts of the five-year (2012-2017) funding compared to project objectives. The aim of the project was to use in person and online curricula, including a humanoid patient simulator (iStan®), to build interest in and knowledge of health sciences and health careers, with a particular focus on local community health concerns. An additional goal was to
DATE:
TEAM MEMBERS: Christina Shane-Simpson John Fraser Susan Hannah Kin Kong Patricia Ward Rabiah Mayas