Skip to main content

Community Repository Search Results

resource project Public Programs
The Discovery Center at Murfree Spring, in partnership with six science centers and museums, will promote and invest in science education in rural communities with limited museum access. This coalition will work with two cohorts of rural school communities (12 total) and focus on engaging, learning from, and supporting rural school districts, teachers, families, and communities through relationship building, asset mapping, and the collaborative integration and implementation of museum resources. Additional activities include the production of publications, virtual presentations, and a virtual tool kit. The project will illustrate the ways in which museums can collaborate to support STEM and literacy at the K-2 level, enhance teacher self-efficacy, attitudes and beliefs, and engage family and community, strengthening services for Americans who live in the most rural areas.
DATE: -
TEAM MEMBERS: Dale McCreedy
resource project Public Programs
The Louisiana Children’s Museum is developing a comprehensive set of resources entitled “Water Dialogues–Living with Water,” designed around its new exhibits and landscape resources, to strengthen the community’s understanding of the challenges associated with water management. They are creating a new field trip series and water-based science curriculum, “Water Pathways” as well as an outreach program, “Steward’s Ship,” to bring the program’s environmental messages to schools and camps. The museum will also conduct a professional development training series on science education for local educators implementing the state’s new science standards, in addition to a series of literacy workshops where children ages four to eight will write “how-to” books and “water journals.” To further spread the associated environmental and sustainability messages, they will organize an annual “Water Fest” program for the community.
DATE: -
TEAM MEMBERS: Shannon Blady
resource project Public Programs
The Jackson Hole Children’s Museum will expand its K–5th grade STEAM programs, which serve more than 1,300 students in Teton County School District #1. The STEAM programs provide inquiry-based, hands-on programming to all K–5 District students in accordance with the Wyoming State Science Standards. An additional 500 students are reached through homeschool groups, summer school, childcare and therapy organizations, and nearby Idaho schools. Each two-hour program opens with interactive, student-centered, scientific method lab stations. Students are then challenged to use newly acquired vocabulary and knowledge to complete a hands-on building project. The program is designed to contribute to increasing science and engineering literacy in the community and to support the development of students’ 21st century skills.
DATE: -
TEAM MEMBERS: Anna Luhrmann
resource project Informal/Formal Connections
The Pensacola MESS Hall will create and deliver “Science Sprouts”—a four-session classroom program for kindergarten students, including related professional development for teachers. The program will focus on 10 underserved elementary schools in the community, providing students and teachers access to quality math, engineering, and science experiences. Trained museum educators will engage children in hands-on exploration while engaging teachers in effective methods to enhance classroom learning. The lessons will include a story followed by small group activities that reinforce key concepts. To increase the teachers’ comfort in program delivery and application to other curricular units, the activities will utilize common materials and connect to children’s literature.
DATE: -
TEAM MEMBERS: Sarabeth Gordon
resource project Public Programs
The Discovery Center, operated by the United States Space Foundation, will partner with the Pikes Peak Library District to implement Small Steps, Giant Leap: STEM Adventures for Little Space Explorers, a free early literacy program designed for children ages 3-6 that seeks to engage the target audience of low-income and military families, populations currently underserved by the Discovery Center. The program is an interactive storytelling experience with an associated hands-on craft that occurs twice monthly, once in person and once virtually, and is designed to enable early learners to grow in literacy via the lenses of science and space exploration while developing vital social skills and self-esteem.
DATE: -
TEAM MEMBERS: Kevin Orangers
resource project Media and Technology
The Discovery Center at Murfree Spring will partner with Mid-Cumberland Head Start to launch the SPARK! Head Start program to reach under-resourced early learners, families, and teachers in Rutherford County, Tennessee. Building on its successful STEM programming that integrates science with children's books, the museum will increase connections between science and literacy skills for 132 pre-K children ages three to five, and enhance the capacity of 16 teachers and two administrators within Rutherford County. Head Start will integrate and embed literacy and science process skills through hands-on STEM activities linked to children's literature and best practices. The project will also include programming designed to increase family engagement in STEM at the museum and at partnering Head Start centers.
DATE: -
TEAM MEMBERS: Dale McCreedy
resource research Public Programs
This poster was presented at the 2021 NSF AISL Awardee Meeting. This poster describes a newly funded collaborative project (9/2021) to engage Planet Word visitors in language science research. Engage visitors in domain of science often overlooked in the public imagination (language arts -> language science enthusiasts!) Diversify participants who contribute data to studies Provide training in research & science communication to a diverse group of students across a range of institutions, including MSIs, broadening participation in STEM Lower barrier to entry for other language
DATE:
TEAM MEMBERS: Charlotte Vaughn Deanna Gagne Patrick Plummer Yi Ting Huang
resource research Media and Technology
The Polar Literacy (PL) project explores the development and implementation of Out of School Time (OST) learning opportunities focused on polar literacy concepts and authentic data with middle school aged youth. This poster was presented at the 2021 NSF AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Janice McDonnell Jason Cervenec
resource project Professional Development, Conferences, and Networks
Developing solutions to large-scale collective problems -- such as resilience to environmental challenges -- requires scientifically literate communities. However, the predominant conception of scientific literacy has focused on individuals, and there is not consensus as to what community level scientific literacy is or how to measure it. Thus, a 2016 National Academies of Sciences, Engineering, and Medicine report, “Science Literacy: Concepts, Contexts, and Consequences,” stated that community level scientific literacy is undertheorized and understudied. More specifically, the committee recommended that research is needed to understand both the i) contexts (e.g., a community’s physical and social setting) and ii) features of community organization (e.g., relationships within the community) that support community level science literacy and influence successful group action. This CAREER award responds to this nationally identified need by iteratively refining a model to conceptualize and measure community level scientific literacy. The model and metrics developed in this project may be applied to a wide range of topics (e.g., vaccination, pandemic response, genetically-modified foods, pollution control, and land-use decisions) to improve a community’s capacity to make scientifically-sound collective decisions. This CAREER award is funded by the Advancing Informal STEM Learning (AISL) and the EHR CORE Research (ECR) programs. It supports the AISL program goals to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. It supports the ECR program goal to advance relevant research knowledge pertaining to STEM learning and learning environments.

The proposed research will conceptualize, operationalize, and measure community level scientific literacy. This project will use a comparative multiple case study research design. Three coastal communities, faced with the need to make scientifically-informed land-use decisions, will be studied sequentially. A convergent mixed methods design will be employed, in which qualitative and quantitative data collection and analyses are performed concurrently. To describe the i) context of each community case, this project will use qualitative research methods, including document analysis, observation, focus groups, and interviews. To measure the ii) features of community organization for each community case, social network analysis will be used. The results from this research will be disseminated throughout and at the culmination of the project through professional publications and conference presentations as well as with community stakeholders and the general public. The integrated education activities include a professional learning certificate for informal science education professionals and STEM graduate students. This certificate emphasizes high-quality community-engaged scholarship, placing students with partners such as museums, farmer’s markets, and libraries, to offer informal learning programs in their communities. This professional learning program will be tested as a model to provide training for STEM graduate students who would like to communicate their research to the public through outreach and extension activities.
DATE: -
TEAM MEMBERS: K.C. Busch
resource research Media and Technology
Student engagement is an important predictor of choosing science-related careers and establishing a scientifically literate society: and, worryingly, it is on the decline internationally. Conceptions of science are strongly affected by school experience, so one strategy is to bring successful science communication strategies to the classroom. Through a project creating short science films on mobile devices, students' engagement greatly increased through collaborative learning and the storytelling process. Teachers were also able to achieve cross-curricular goals between science, technology
DATE:
TEAM MEMBERS: Kaitlyn Martin Lloyd Davis Susan Sandretto
resource research Public Programs
This Masters project consists of two elements: 1) an integrated after-school program to improve student English language reading and academic outcomes for third graders' vocabulary development by incorporating music, artistic creativity and linguistics; 2) a pilot sample curriculum that demonstrates the approach for building student comprehension through musical theater and Science, Technology, Engineering, and Mathematics (STEM) content experiences. Called "Water Buddy", this is an after-school program uses singing, dancing, writing, and play to build reading and vocabulary skills. The goal
DATE:
TEAM MEMBERS: Cynthyny Lebo
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project would expand the informal STEM learning field's understanding of how to use digital science media to increase STEM educational experiences and opportunities for English language learners. Across the U.S. there are significant STEM opportunity and achievement gaps for English learners with varying levels of English proficiency. This is at a time when the U.S. is facing a shortage of STEM professionals in the workforce including the life and physical science fields. This project aims to close these gaps and improve English learners' STEM learning outcomes using digital media. Within community colleges, there are multiple site-based programs to provide content to help English learners to learn English and to improve their math and literacy skills. Involving the state community college networks is a critical strategy for gathering important feedback for the pedagogical approach as well as for recruiting English learner research participants. The team will initially study an existing YouTube chemistry series produced by Complexly then produce and test new videos in Spanish using culturally relevant instructional strategies. The target audience is 18-34-year-old English learners. Project partners are Complexly, a producer of digital STEM media and EDC, a research organization with experience in studying informal STEM learning.

The project has the potential to advance knowledge about the use of culturally relevant media to improve STEM opportunities and success for English language learners. Using a Design-Based Implementation Research framework the research questions include: 1) what are the effective production and instructional strategies for creating digital media to teach science to English learners whose native language is Spanish? 2) what science content knowledge do English learners gain when the project's approach is applied to a widely available set of YouTube videos? and 3) how might the findings from the research be applied to future efforts targeting English learners? The project has the potential to significantly broaden participation in science and engineering. Phase 1 of the research will be an exploration of how to apply strategic pedagogical approaches to digital media content development. Interviews will be conducted with educators in 3 focal states with high numbers of English language learners (NY, CA, TX) to reflect on pedagogical foundations for teaching science to English learners. A survey of 30 English learners will provide feedback on the perceived strengths and weaknesses of a selection of existing YouTube chemistry videos. Phase 2 will create/test prototypes of 6 adapted chemistry videos. Forty students (ages 18-34) will be recruited and participate in cognitive interviews with researchers after viewing these videos. Based on this input additional videos will be produced with revised instructional strategies for further testing. Additional rounds of production and testing will be conducted to develop an English learners mini chemistry series. Phase 3 will be a pilot study to gauge the science learning of 75 English learners who will view an 11-episode chemistry miniseries. It will also identify gaps in expected learning to determine whether any further adjustments are necessary to the instructional approach.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Kelsey Savage Ceridwen Riley Stan Muller Heather Lavigne Caroline Parker Katrina Bledsoe