Skip to main content

Community Repository Search Results

resource project Media and Technology
Future educational robots are emerging as social companions supporting learning. By socially interacting with such a robot, learners can potentially reason and talk about the things they are learning and receive help in seeing the relevance of STEM in their daily lives. However, little is known about how to design educational robots to work with youth at home over a long period of time. This project will develop an informal science learning program, called STEMMates, in collaboration with a local community center, for youth with little interest in science. The program will partner learners with an in-home learning companion robot, designed to read books with youth and provide science activities for them at the community center, where youth will engage in exciting and personally relevant science learning. As the learner reads books, the robot will make comments about what is happening in the book to help connect the reading to the science activities at the community center. The overarching goals of STEMMates are to: (a) positively support youth's individual interest in science and future science learning, (b) connect in-home learning experiences with out-of-school community-based learning, (c) bridge the gap between formal and informal engagement and learning in science, and (d) encourage the participation of youth who are underrepresented and who have low interest in STEM learning. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to and evidence-based understanding of the design and development of STEM learning opportunities for the public in informal environments.

Researchers will work with youth and staff at the community center, alongside experts in informal science learning, to design the program and then test how learners respond to reading with the robot and participating in the science activities and whether this program has a lasting impact on their science interest. Social interactions with a robot may help distribute cognitive load during learning activities to help youth reason about STEM and also supplement learning by improving feelings of value and belongingness in order to facilitate lasting interest development. Following a mixed-methods research approach using qualitative and quantitative data-collection techniques, the research team will investigate the following research questions: (1) What social and interest-development supports and activities can be utilized as socially situated interest scaffolds in an informal and in-home, augmented reading and science activity program to promote individual interest and learning in science for low interest learners? How can a social robot best facilitate this program? (2) How do learners perceive and interact with the robot in authentic, in-home, long-term situations, and how does this interaction change over time? (3) Does working with a robot designed with socially situated interest scaffolds increase individual interest in science when compared to a pre-intervention baseline, and do these effects impact future (long-term) interest and engagement in formal science learning? To answer these research questions, researchers will implement the science learning program during an 11-week summer deployment and utilize an AB single-case research design. Interview-based qualitative data and self-report surveys to examine the learner?s perception of the robot and their evolving interest in science and quantitative data on science learning using pre-/post-measure comparisons will be collected. Log data of time-on-task, reading rate, book selection and reading goal attainment will also be collected by the robot. The outcomes of this project will lay the groundwork for future investigations of the design of social robots for a diversity of learner populations and their use in different informal learning settings.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Bilge Mutlu
resource project Public Programs
This program will derive knowledge on extreme weather and its concepts to be shared with youth in the Boston and Kansas City areas. Subsequently, the youth will share this knowledge by displaying it as art work on the rapid transit systems. The art projects will culminate in broad-based exhibition at the end of each group's sessions. The project will involve 200 youth per region resulting in an impact of 1000 youth per year, 80 adult mentors and 20,000 adult transportation riders in learning about extreme weather concepts. Participant organizations are the University of Mass-Boston, University of Mass-Lowell, The Massachusetts College of Art, the University of Kansas Center for Research Inc., and the Goodman Research Group Inc.

The goals of this project are to bring the topic of extreme weather to the foreground by educating youth and in turn having them educate a selected group of adults that use the rapid transit system. Groups of youths will learn about the topic through a series of meetings with mentors who are experts on the issues around extreme weather. The youth will derive their own art-works with their interpretation. These art-works will be displayed on the rapid transit systems in New England (Merrimack Valley and Worcester regions) and the Mid-West (Topeka and Kansas City areas). Using a quasi-experimental mixed methodology (demographics, bus ridership, initial level of science awareness, and interest) the goal is to understand science learning outcomes associated with the creation and public display of youth art. Research questions of importance in this regard are 1. In what ways does blending art with the science enhance youth learning about extreme weather concepts? 2. To what extent does youth art support adult learning of science? and 3. How does regional context affect learning about extreme weather?

Broader impacts will result from the youth diversity as well as the diversity of riders of the rapid transit systems where the art of extreme weather is displayed.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Robert Chen Lois Hetland Jill Lohmeier Stephen Mishol Steven Schrock Claudia Bode
resource research Public Programs
In April 2018, FHI 360, under the leadership of Maryann Stimmer and Merle Froschl, convened a meeting of thought leaders in Washington, D.C. to capture a “snapshot” of STEM education. They subsequently conducted additional interviews with more than 50 local and national policy leaders; public and private funders; researchers; PreK-12 and post-secondary educators; parents, and leaders of afterschool programs, science centers and youth-serving organizations. The purpose of this summary report is to identify current trends and gaps to inform research, policy, and practice in order to reinforce
DATE:
TEAM MEMBERS: Maryann Stimmer Merle Froschl
resource research Public Programs
Curiosity is a grant-funding programme from the Wellcome Trust with BBC Children in Need., and it provides funding to help youth organisations develop and deliver inspiring science activities for disadvantaged children and young people. This report looks at the key findings from the 32 projects funded during the first round. The Round 1 projects were delivered by voluntary and community sector organisations, some of which were in partnership with ISL providers, and offered a variety of science opportunities from surveying local weather to building a green-powered race car. Many projects
DATE:
TEAM MEMBERS: Wellcome Trust
resource research Media and Technology
Traditionally, programs designed for community audiences are designed by the STEM institution or organization seeking to “serve” a given community, using top-down design processes that are framed by the perspectives of the lead organizations, and typically reinforcing dominant cultural norms in STEM and therefore marginalizing certain audiences. Co-design offers an approach that can lead to more robust and sustainable results by developing programs that are culturally responsive, respectful, and inclusive. About this resource: This is a practice brief produced by CAISE's Broadening
DATE:
TEAM MEMBERS: Dale McCreedy Nancy Maryboy Breanne Litts Tony Streit Jameela Jafri Center for Advancement of Informal Science Education (CAISE)
resource research Media and Technology
Science educators and communicators must value and appreciate science that already takes place in the community, which may look different than traditional (school-like) representations of science, which have historically excluded many communities. "Community science programs" are designed by community members to advance community priorities and recognize that communities themselves—not just the nearby universities or research labs—are rich with people, resources, and practices that make up science in everyday life. About this resource: This is a practice brief produced by CAISE's
DATE:
TEAM MEMBERS: Angela Calabrese Barton Edna Tan Daniel Birmingham Carmen Turner Center for Advancement of Informal Science Education (CAISE)
resource research Public Programs
This poster explores three programs that engage underrepresented youth in physics learning through dance.
DATE:
TEAM MEMBERS: Folshade Cromwell Solomon Tracey Wright Lawrence Pratt Vandana Singh Mariah Steele Robin Thompson Dionne Champion Christina Bebe
resource research Public Programs
How does focusing on “community science literacy” change the role of an informal science learning center? This poster was presented at the 2019 NSF AISL Principal Investigators meeting.
DATE:
TEAM MEMBERS: Billy Spitzer
resource research Public Programs
This poster presents the overall approach of the project and was presented at the NSF AISL PI meeting in February 2019 by the PI. This pilot research seeks to understand how informal learning experiences called mapathons are viable pathways for veterans to transition to the civilian workforce. The conceptual approach pays attention to the realities of the life course of military and veteran families, especially building upon theories of change related to transitions that include a spatial component.
DATE:
TEAM MEMBERS: Patricia Solis Dennis Patterson Melanie Hart
resource evaluation Public Programs
In June of 2017, the Exploratorium hosted the GENIAL Summit which brought together approximately 91 practitioners, community leaders, diversity-focused organization staff, researchers, and media/marketing specialists from across the country and Puerto Rico for a one and a half day gathering. The National Science Foundation (NSF) funded Summit focused on increasing Latino participation in Informal STEM Learning (ISL) environments by examining these five content strands identified by the GENIAL team: 1. Latino Audiences 2. Marketing, Communicating, and Media 3. Community Collaboration and
DATE:
TEAM MEMBERS: Wendy Meluch
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for STEM learning in a variety of settings. Many military veterans who seek to transition to higher education or workforce pathways find it challenging to translate the skills they acquired during service to civilian STEM settings and the modern day workforce. Yet many returning veterans have significant experience with STEM fields, including mapping and geospatial technologies, because of their unique functions and service assignments. Such geospatial skills are useful for location-aware industries, citizen science and public services. At the same time, military and veteran families have been largely overlooked as an important public audience for focused informal STEM learning. Informal learning events called "mapathons" which enlists participants to mapping exercises and create geospatial data on open platforms that address authentic needs in their communities and the broader society at large. When seeking to further their education upon returning from service, veterans' typical options have included some form of formal higher education. Mapathons may be a feasible bridging activity that (a) recognizes veterans' unique, valuable, and in-demand STEM skills and (b) supports lifelong learning.

This pilot research seeks to understand how informal learning experiences such as mapathons are viable pathways for veterans to transition to the civilian workforce. The conceptual approach pays attention to the realities of the life course of military and veteran families, especially building upon theories of change related to transitions to include a spatial component. The foundation of the project's intellectual merit is its explicit inclusion and sensitivity to place, scale, and spatial behavior, building directly from findings of prior NSF-funded projects and the evidence base for informal learning pathways. The research will contribute to knowledge about workforce development by addressing the questions: (1) To what extent do veterans recognize that their extant skills acquired, in military settings, are translatable to civilian STEM settings?; (2) How can informal learning experiences help a diverse veteran population increase awareness of the translatability of geospatial workforce competencies, build confidence in technology skills, and motivate interest to pursue formal studies in STEM fields in general?; and (3) What pathways do which veterans favor when they could pursue formal STEM higher education learning among an array of choices online or at regional sites, and why? The study will engage 320 participants at 8 sites across Texas; employ in-depth surveys and interviews; and use spatial analysis to elicit insights about the research questions.

Military and veteran families include a significant number of people from group typically underrepresented in STEM fields. Supporting more veterans to transition successfully to higher education pathways or careers in STEM is a vital service to the nation. This study on informal to formal pathways for veterans will include an innovative understanding of the importance of place in meaning-making and in the reality of choices they consider during the transitions of their life course.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Patricia Solis Melanie Hart Dennis Patterson
resource evaluation Public Programs
This set of appendices represent all research instruments related to study presented in the I/CaLL Art Experiences and Advancing Science Literacy report (NewKnowledge Publication #NSF.097.115.07). Appendix A: Installation Site Intercept Interview Instrument Appendix B: Artists-Scientists Walk & Talks Instrument Appendix C: Post-Performance Event Survey Instrument Note that researchers did not use an instrument for the fourth aspect of the study, the post-performance event reflection sessions. Instead, they allowed the discussions to be directed by the reflection participants.
DATE:
TEAM MEMBERS: John Fraser Rebecca Joy Norlander Sophie Swanson Nezam Ardalan Kate Flinner Joanna Laursen Brucker Nicole LaMarca