Skip to main content

Community Repository Search Results

resource research Media and Technology
This chapter discusses the selection and potential use of electronic games and simulations in distance learning supported by an operational model called AIDLET. After analyzing the different approaches to the use of games and simulations in education, and discussing their benefits and shortcomings, a framework was developed to facilitate the selection, repurposing, design and implementation of games and simulations, with focus on the practical aspects of the processes used in Open and Distance Learning (ODL). Whereas traditional learning is based on knowledge memorization and the completion of
DATE:
TEAM MEMBERS: Jose Bidarra Meagan Rothschild Kurt Squire
resource research Media and Technology
The Year in ISE is a slidedoc designed to track and characterize field growth, change and impact, important publications, and current topics in ISE in 2018. Use it to inform new strategies, find potential collaborators for your projects, and support proposal development. Scope This slidedoc highlights a selection of developments and resources in 2018 that were notable and potentially useful for the informal STEM education field. It is not intended to be comprehensive or exhaustive, nor to provide endorsement. To manage the scope and length, we have focused on meta analyses, consensus reports
DATE:
TEAM MEMBERS: James Bell
resource research Media and Technology
The cyberlearning community in the United States brings computer scientists and learning scientists together to design and study innovative learning technologies. The Cyberlearning Community Report: The State of Cyberlearning and the Future of Learning With Technology highlights examples of the exciting work our community is engaged in as we integrate the latest innovations in learning science and computer science into new research designs and methods. This work is also driving the need for new learning sciences in areas such as embodied cognition, identity, and affect, and requires advances
DATE:
TEAM MEMBERS: June Ahn Jodi Asbell-Clarke Matthew Berland Catherine Chase Noel Enyedy Judith Fusco Shuchi Grover Erica Halverson Kemi Jona H Chad Lane Wendy Martin Emma Mercier Tom Moher Amy Ogan Nichole Pinkard Joseph Polman Jeremy Roschelle Patricia Schank Katie Headrick Taylor Michelle Wilkerson Marcelo Worsley
resource project Media and Technology
The Cyberlearning and Future Learning Technologies Program funds efforts that will help envision the next generation of learning technologies and advance what we know about how people learn in technology-rich environments. Cyberlearning Exploration (EXP) Projects explore the viability of new kinds of learning technologies by designing and building new kinds of learning technologies and studying their possibilities for fostering learning and challenges to using them effectively. This project brings together two approaches to help K-12 students learn programming and computer science: open-ended learning environments, and computer-based learning analytics, to help create a setting where youth can get help and scaffolding tailored to what they know about programming without having to take tests or participate in rigid textbook exercises for the system to know what they know.

The project proposes to use techniques from educational data mining and learning analytics to process student data in the Alice programming environment. Building on the assessment design model of Evidence-Centered Design, student log data will be used to construct a model of individual students' computational thinking practices, aligned with emerging standards including NGSS and research on assessment of computational thinking. Initially, the system will be developed based on an existing corpus of pair-programming log data from approximately 600 students, triangulating with manually-coded performance assessments of programming through game design exercises. In the second phase of the work, curricula and professional development will be created to allow the system to be tested with underrepresented girls at Stanford's CS summer workshops and with students from diverse high schools implementing the Exploring Computer Science curriculum. Direct observation and interviews will be used to improve the model. Research will address how learners enact computational thinking practices in building computational artifacts, what patters of behavior serve as evidence of learning CT practices, and how to better design constructionist programming environments so that personalized learner scaffolding can be provided. By aligning with a popular programming environment (Alice) and a widely-used computer science curriculum (Exploring Computer Science), the project can have broad impact on computer science education; software developed will be released under a BSD-style license so others can build on it.
DATE: -
TEAM MEMBERS: Shuchi Grover Marie Bienkowski John Stamper
resource project Media and Technology
Education stakeholders from advocates to developers are increasingly recognizing the potential of science games in advancing student academic motivation for and interest in science and science careers. To maximize this potential, the project will use science games (e.g. Land Science, River City, and EcoMUVE), shown to be enjoyable to students and proven to promote student learning in science at the middle school level. Through a two-phase process, games will be used as vehicles for learning about ways to change how students think about science and potentially STEM careers. The goal of the intervention is to explore which processes and design features of science games will actually help students move beyond a temporary identity of being a scientist or engineer (as portrayed while playing the game) to one where students began to see themselves in real STEM careers. Students' participation will be guided by teams of teachers, faculty members, and graduate students from Drexel University and a local school. All science students attending the local inner city middle school in Philadelphia, PA, will participate in the intervention.

Using an exploratory mixed-method design, the first two years of the project will focus on exploring, characterizing, coding, and analyzing data sets from three large games designed to help students think about possible careers in science. During year 3, the project will integrate lessons learned from the first two years into the existing middle school science curriculum to engage students in a one-year intervention using PCaRD (Play Curricular activity Reflection Discussion). During the intervention, the PI will work with experts from Drexel University and a local school to collect data on the design features of Land Science to capture identity change in the science identity of the participating students. Throughout the course of year 3, the PI will observe, video, interview, survey, and use written tasks to uncover if the Land Science game is influencing students' identity in any way (from a temporary to a long-term perspective about being a scientist or engineer). Data collected during three specified waves during the intervention will be compared to analyses of existing logged data through collaborations with researchers at Harvard University and the University of Wisconsin-Madison. These comparisons will focus on similar middle-aged science students who used the same gaming environments as the students involved in this study. However, the researcher will intentionally look for characteristics related to motivation, science knowledge, and science identity change.

This project will integrate research and education to investigate learning as a process of change in student science identity within situated environmental contexts of digital science gameplay around curricular and learning activities. This integrated approach will allow the researcher to explore how gaming is inextricably linked to the student as an individual while involved in the learning of domain specific content in science. The collaboration among major university and school partners; the expertise of the researcher in educational psychology, educational technology, and science games; and the project's advisory board makes this a real-life opportunity for the researcher to use information that naturally exists in games to advance knowledge in the field about the value of gaming to changing students' science identities. It also responds to reports by the National Research Council committee on science learning and computer games, which identifies games as having the potential to catalyze new approaches to science learning.
DATE: -
TEAM MEMBERS: Aroutis Foster
resource project Media and Technology
Purpose: The United States (U.S.) has traditionally produced the world’s top research scientists and engineers, leading to breakthrough advances in science and technology. Despite the importance of STEM careers, many U.S. students are not graduating with strong STEM knowledge, skills or interests, and the percentage of students prepared for or pursuing STEM degrees or careers is declining. Research shows that the decreased interest in STEM typically begins in the middle school years, pose significant academic and social challenges for students. This project will develop a web-based game teach 6th to 8th students key scientific inquiry skills, along with the academic mindsets and learning strategies to facilitate engagement and effective science learning.

Project Activities: The researchers will create a prototype by mapping key Next Generation Science Standards and learning goals with concepts and content, and producing a game design document. Following completion of the prototype, the researchers will finalize the server architecture, create the core code systems, concept art, and develop a prototype in order to simulate the final user experience. Iterative refinements will be conducted as needed at major production milestones until the game is fully functional. Once development is complete, the research team will assess the usability and feasibility, fidelity of implementation, and the promise of the game to improve outcomes in a pilot study. In this study, 200 students in 10 classes will participate, with 5 of the classrooms randomly assigned to use the game and 5 who will proceed as normal. All students will complete pre- and post- program surveys assessing their academic mindsets, learning strategies, and science skills.

Product: This project will develop SciSkillQuest, a web-based multiplayer game intended to teach middle school students scientific inquiry skills and to foster academic growth mindsets in science. Students will pursue quests, employing inquiry skills to navigate and succeed in the game, including Questioning, Modeling, Investigating, Analyzing, Computing, Explaining, Arguing, and Informing. The game will include different paths to a solution, role playing elements, immersive narratives, challenge-based progressions, and peer collaboration to engage players. The growth mindset message — that ability and skill are developed through effort and learning — will be introduced and reinforced through feedback by embedded in-game characters. The games will be supplemental to the curriculum but will also be designed to be integrated within instructional practice. The game will be available for mobile devices as well as web browsers.
DATE: -
TEAM MEMBERS: Lisa Sorich Blackwell
resource project Media and Technology
Purpose: An estimated 5 to 8% of elementary school students have some form of memory or cognitive deficit that inhibits learning basic math. Researchers have identified several areas where children with math learning difficulties struggle. These include a strong sense of number facts to quickly and accurately perform operations on single digit numbers, the use of strategies to solve problems which have not yet been memorized, a sense to figure out whether or not an answer is reasonable, and self-monitoring to assess one's own efficacy and understanding. To support students with math learning difficulties in grades 1 to 4, this project team will develop a series of apps for touch-screen tablets that encourage single digit operational fluency, conceptual understanding, strategy awareness, and self-understanding.

Project Activities: During Phase I project in 2012, the research team developed a prototype of the single digit addition game, following an iterative process incorporating feedback from teachers and students having difficulty with math. Nineteen students participated in a pilot study, and the researchers found that the prototype functioned well and that users were engaged by the game. In Phase II, the team will build and refine the back end system, design and develop the teacher website, and create content for games in subtraction, multiplication, and division. Researchers will carry out a pilot test of the usability and feasibility, fidelity of implementation, and promise of the game to improve learning. Students in first to fourth grade identified by teachers as having the greatest difficulty with math will participate in the pilot study. Half of the 120 students participating in the pilot study will be randomly selected to play the game as a supplement to classroom learning whereas the other half will not have access. Students in the control group will be provided the games at the end of the study. Analyses will compare pre- and post-test math scores.

Product: The web-based game, MathFacts, will include a series of apps for touch-screen tablet computers to support math learning for 1st to 4th grade students with major or sometimes intractable learning difficulties. In the game, students will learn content through mini-lessons, engage with problems in practice and speed rounds, and then receive formative feedback on their performance. Students will use and manipulate blocks, linker tubes, number lines, and interact with engaging pedagogical agents such as parrots and sloths. Students will set goals, advance to more challenging levels, and engage in competition. The game will be self-paced and will provide individualized formative assessment scaffolding when students do not know the answer to a question. A teacher management system will support professional development and will produce reports to guide instruction. The intended outcomes from gameplay will include increased fluency, conceptual understanding, strategy awareness, self-assessment, and motivation of basic math.
DATE: -
TEAM MEMBERS: Kara Carpenter
resource project Media and Technology
The project team is developing a prototype of Eco, a multi-player game to prepare high school students to be environmentally literate citizens with 21st century skills. To play the game, students will enter a shared online world featuring a simulated ecosystem of plants and animals. Students will co-create the civilization by measuring, modeling, and analyzing the underlying ecosystem. Students advocate proposed plans to classmates and make decisions as a group. Cooperation and science-based decision making activities are necessary for success in preventing the destruction of their environment. The prototype will include teacher resources to support the alignment of game play to learning goals, and implementation. In the Phase I pilot research, the project team will examine whether the game prototypes function as planned, if teachers are able to integrate it within the classroom environment, and whether students are engaged with the prototype.
DATE: -
TEAM MEMBERS: John Krajewski
resource project Media and Technology
Purpose: This project will develop and test Eco, an online multiplayer virtual environment and game designed to enhance middle school students' knowledge of ecology and environmental literacy. This is important because according to the 2011 National Assessment of Educational Progress, students in the United States ranked 17th in science among the world's most developed countries, and over a third of eighth-graders scored below basic level, the lowest performance level. The Framework for 21st Century Skills presents the need for education materials that engage students and use technology effectively, meet rigorous content and skill standards, foster interdisciplinary work, and promote collaborative problem solving.

Project Activities: During Phase I (completed in 2014), the team developed a prototype of Eco consisting of a system architecture that enabled user-controlled avatars to complete basic tasks. At the end of Phase I, a pilot study with 60 students from five classrooms demonstrated that the prototype functioned as intended, that students found the game to be engaging, and that students were able to collaborate with classmates during gameplay. In Phase II the developers will strengthen functionality, add content, and build a teacher dashboard to track student data and house implementation resources. After development is complete, the team will conduct a pilot study to assess the feasibility and usability, fidelity of implementation, and the promise of the game for promoting students' ecosystem learning and environmental literacy. The researchers will collect data from 150 students in 10 classrooms. Half of the classrooms will be randomly assigned to use Eco to supplement standard classroom instruction while the other half will continue with normal practice. Analyses will compare pre-and-post scores of student's ecology knowledge and environmental literacy.

Product: Eco will be a multi-player game to teach standards in ecology and prepare middle schools students to be environmentally literate citizens. To play the game, students will enter a shared online world featuring a simulated ecosystem of plants and animals. Students will co-create a civilization by measuring, modeling, and analyzing the underlying ecosystem. Students will advocate for proposed plans to classmates and make decisions as a group. Cooperation and science-based decision making activities will occur, in order to prevent the destruction of the environment. The game will include teacher resources to support the alignment of game play to learning goals, and implementation.
DATE: -
TEAM MEMBERS: John Krajewski
resource project Media and Technology
Purpose: This project will develop and test Happy Atoms, a physical modeling set and an interactive iPad app for use in high school chemistry classrooms. Happy Atoms is designed to facilitate student learning of atomic modeling, a difficult topic for chemistry high school students to master. Standard instructional practice in this area typically includes teachers using slides, static ball and stick models, or computer-simulation software to present diagrams on a whiteboard. However, these methods do not adequately depict atomic interactions effectively, thus obscuring complex knowledge and understanding of their formulas and characteristics.

Project Activities: During Phase I (completed in 2014), the team developed a prototype of a physical modeling set including a computerized ball and stick molecular models representing the first 17 elements on the periodic table and an iPad app that identifies and generates information about atoms. A pilot study at the end of Phase I tested the prototype with 187 high school students in 12 chemistry classes. Researchers found that the prototype functioned as intended. Results showed that 88% of students enjoyed using the prototype, and that 79% indicated that it helped learning. In Phase II, the team will develop additional models and will strengthen functionality for effective integration into instructional practice. After development is complete, a larger pilot study will assess the usability and feasibility, fidelity of implementation, and promise of Happy Atoms to improve learning. The study will include 30 grade 11 chemistry classrooms, with half randomly assigned to use Happy Atoms and half who will continue with business as usual procedures. Analyses will compare pre-and-post scores of student's chemistry learning, including atomic modeling.

Product: Happy Atoms will include a set of physical models paired with an iPad app to cover high school chemistry topics in atomic modeling. The modeling set will include individual plastic balls representing the elements of the periodic table. Students will use an iPad app to take a picture of models they create. Using computer-generated algorithms, the app will then identify the model and generate information about its physical and chemical properties and uses. The app will also inform students if a model that is created does not exist. Happy Atoms will replace or supplement lesson plans to enhance chemistry teaching. The app will include teacher resources suggesting how to incorporate games and activities to reinforce lesson plans and learning.
DATE: -
TEAM MEMBERS: Jesse Schell
resource project Media and Technology
The project team is developing and testing a prototype of Thinkzone, a blended learning portal intended for Kindergarten through Grade 8 teachers to host existing education learning games across core subject areas. The prototype will host games, and include a learning system to train educators to integrate games to replace or supplement instructional practice. In the Phase I pilot study will include 10 teachers and 200 students. The researchers will examine if the prototype functions as planned, if teachers are able to implement it with small groups of students, and whether students are engaged across the various games.
DATE: -
TEAM MEMBERS: Scott Brewster
resource project Media and Technology
This project team is developing and testing a prototype of the Teachley Analytics Library, a platform intended to host third party-developed mathematics game apps for students in kindergarten through Grade 8. The prototype will include a dashboard to host games and generate formative assessment data to inform teacher instruction. In the Phase I pilot study, the team will examine whether the prototype functions as planned with 40 Grade 1 and 2 math teachers. The study will test if teachers are able to implement games within the classroom and utilize data to inform practice, and whether students are engaged by gameplay.
DATE: -
TEAM MEMBERS: Kara Carpenter