Skip to main content

Community Repository Search Results

resource project Public Programs
The goals of this proposal are: 1) to provide opportunities for underrepresented students to consider careers in basic or clinical research by exciting them through an educational Citizen Science research project; 2) to provide teachers with professional development in science content and teaching skills using research projects as the infrastructure; and 3) to improve the environments and behaviors in early childcare and education settings related to healthy lifestyles across the state through HSTA students Citizen Science projects. The project will complement or enhance the training of a workforce to meet the nation’s biomedical, behavioral and clinical research needs. It will encourage interactive partnerships between biomedical and clinical researchers,in-service teachers and early childcare and education facilities to prevent obesity.

Specific Aim I is the Biomedical Summer Institute for Teachers led by university faculty. This component is a one week university based component. The focus is to enhance teacher knowledge of biomedical characteristics and problems associated with childhood obesity, simple statistics, ethics and HIPAA compliance, and the principles of Citizen Science using Community Based Participatory Research (CBPR). The teachers, together with the university faculty and staff, will develop the curriculum and activities for Specific Aim II.

Specific Aim II is the Biomedical Summer Institute for Students, led by HSTA teachers guided by university faculty. This experience will expose 11th grade HSTA students to the biomedical characteristics and problems associated with obesity with a focus on early childhood. Students will be trained on Key 2 a Healthy Start, which aims to improve nutrition and physical activity best practices, policies and environments in West Virginia’s early child care and education programs. The students will develop a meaningful project related to childhood obesity and an aspect of its prevention so that the summer institute bridges seamlessly into Specific Aim III.

Specific Aim III is the Community Based After School Club Experiences. The students and teachers from the summer experience will lead additional interested 9th–12th grade students in their clubs to examine their communities and to engage community members in conducting public health intervention research in topics surrounding childhood obesity prevention through Citizen Science. Students and teachers will work collaboratively with the Key 2 a Healthy Start team on community projects that will be focused on providing on-going technical assistance that will ultimately move the early childcare settings towards achieving best practices related to nutrition and physical activity in young children.
DATE: -
TEAM MEMBERS: Ann Chester
resource project Media and Technology
Recruiting more research scientists from rural Appalachia is essential for reducing the critical public health disparities found in this region. As a designated medically underserved area, the people of Appalachia endure limited access to healthcare and accompanying public health education, and exhibit higher disease incidences and shorter lifespans than the conventional U.S. population (Pollard & Jacobsen, 2013). These health concerns, coupled with the fact that rural Appalachian adults are less likely to trust people from outside their communities, highlights the need for rural Appalachian youth to enter the biomedical, behavioral, and clinical research workforce. However, doing so requires not only the specific desire to pursue a science, technology, engineering, math, or medical science (STEMM) related degree, it also requires the more general desire to pursue post-secondary education at all. This is clearly not occurring in Tennessee’s rural Appalachian regions where nearly 75% of adults realize educational achievements only up to the high school level. Although a great deal of research and intervention has been done to increase students’ interest in STEMM disciplines, very little research has considered the unique barriers to higher education experienced by rural Appalachian youth. A critical gap in past interventions research is the failure to address these key pieces of the puzzle: combatting real and perceived barriers to higher education and STEMM pursuits in order to increase self-efficacy for, belief in the value of, and interest in pursuing an undergraduate degree. Such barriers are especially salient for rural Appalachian youth.
Our long-range goal is to increase the diversity of biomedical, clinical and behavioral research scientists by developing interventions that both reduce barriers to higher education and increase interest in pipeline STEMM majors among rural Appalachian high school students. Our objective in this application is to determine the extent to which a multifaceted intervention strategy combining interventions to address the barriers to and supports for higher education with interventions to increase interest in STEMM fields leads to increased intentions to pursue an undergraduate STEMM degree. Our hypothesis is that students who experience such interventions will show increases in important intrapersonal social-cognitive factors and in their intentions to pursue a postsecondary degree than students not exposed to such interventions. Based on the low numbers of students from this region who pursue post-secondary education and the research demonstrating the unique barriers faced by this and similar populations (Gibbons & Borders, 2010), we believe it is necessary to reduce perceived barriers to college-going in addition to helping students explore STEMM career options. In other words, it is not enough to simply offer immersive and hands-on research and exploratory career experiences to rural Appalachian youth; they need targeted interventions to help them understand college life, navigate financial planning for college, strategize ways to succeed in college, and interact with college-educated role models. Only this combination of general college-going and specific STEMM-field information can overcome the barriers faced by this population. Therefore, our specific aims are:

Specific Aim 1: Understand the role of barriers to and support for higher education in Appalachian high school students’ interest in pursuing STEMM-related undergraduate degrees. We will compare outcomes for students who participate in our interventions, designed to proactively reduce general college-going barriers while increasing support systems, to outcomes for students from closely matched schools who do not participate in these interventions to determine the extent to which such low-cost interventions, which can reach large numbers of students, are effective in increasing rural Appalachian youth’s intent to pursue STEMM-related undergraduate degrees.

Specific Aim 2: Develop sustainable interventions that decrease barriers to and increase support for higher education and that increase STEMM-related self-efficacy and interest. Throughout our project, we will integrate training for teachers and school counselors, nurture lasting community partnerships, and develop a website with comprehensive training modules to allow the schools to continue implementing the major features of the interventions long after funding ends.

This research is innovative because it is among the first to recognize the unique needs of this region by directly addressing barriers to and supports for higher education and integrating such barriers-focused interventions with more typical STEMM-focused interventions. Our model provides opportunities to assess college-going and STEMM-specific self-efficacy, outcome expectations, and barriers/supports, giving us a true understanding of how to best serve this group. Ultimately, this project will allow future researchers to understand the complex balance of services needed to increase the number of rural Appalachians entering the biomedical, behavioral, and clinical research science workforce.
DATE: -
TEAM MEMBERS: Melinda Miller Gibbons Erin Hardin
resource research Public Programs
In April 2001, the Museum of Science in Boston launched the Current Science & Technology Center, an effort to address leading edge research for school and public audiences and to provide depth and context for science and technology stories in the news within a museum context and through various outreach methods. The Museum of Science (MOS), in collaboration with the Institute for Learning Innovation (Institute), has initiated a multi-year evaluation effort designed to support the Current Science & Technology Center and its Health Science Education Partnership through (1) the monitoring and
DATE:
TEAM MEMBERS: Institute for Learning Innovation Martin Storksdieck Mika Cohen Jones John H Falk Carol Lynn Alpert
resource project Media and Technology
Serial Passage: AIDS, Race, and Culture is a multi-part documentary series. The Long-term goals are: 1) to produce a documentary series exploring the specific and devastating impact of H.I.V./AIDS upon Africans and African-Americans; and 2) to create a heightened understanding of the need for H.I.V. prevention among the high-risk group of young, inner-city African-Americans who've so far proved unresponsive to available public health information. Specific Aims: 1) To deconstruct the racial stigma of AIDS, and scientifically confront the conspiracy theories which are firmly linked to the disease in black America, and in Africa; and 2) to work with an inner-city high school science class, actively involving them in the making of the series. Research Design and Methods: 1) To document on film the process of scientific inquiry which led two prominent researchers to their theory on the origin of AIDS; 2) To document on film the social impact of H.I.V/AIDS upon specific African countries, including Uganda and South Africa, and upon African-American communities in the United States; 3) To periodically screen footage of the documentary for the high school class and conduct videotaped discussions between the students and the scientists throughout one academic year; and 4) To give the students a videotaped questionnaire at the beginning and end of the year designed to measure how much they learn about AIDS and its impact upon their particular community.
DATE: -
TEAM MEMBERS: Claudia Pryor David Guilbault
resource project Public Programs
The Tech Museum of Innovation and Stanford University School of Medicine Department of Genetics have established longterm partnership to enable the public to draw connections between modern genetics research and choices they face about their health. Together we will develop, produce, evaluate, and disseminate Life's New Frontier, a dynamic exhibition which will inform the public about the goals and methods of modern genetics. Interactive permanent exhibits and guided learning centers, staffed jointly by museum educators and by working scientists (predominantly Stanford graduate students and postdoctoral fellows), will take the public into the minds and laboratories of scientists who are revolutionizing biomedical science. The exhibition and associated public and school programs will emphasize the emerging discipline of bioinformatics, which is fundamental to the Human Genome Project, gene-based diagnosis, rational drug design, and treatment of disease. Life's New Frontier will open in the summer of 2003 to reach an estimated 1.5 million diverse people annually through museum and online visitation. It will set a new standard for the treatment of cutting-edge science in exhibitions by establishing an infrastructure that permits rapid changes to exhibit content, and creating opportunities for visitors to receive personalized science and health updates after their visit. The exhibition also will serve as a platform to foster continuing personal interaction among middle and high school students, Stanford faculty and students, and the general public. The Tech/Stanford partnership will be maintained through staff liaison positions at each partner institution and will be evaluated to assess its effectiveness. We hope to extend this model to other departments at the Stanford University School of Medicine, and to disseminate it as a model for other science center/university partnerships in biomedical sciences. We anticipate significant outcomes of this partnership: the pblic will be better able to apply the ideas of modern genetics to decisions about their health; and a broad range of students from diverse backgrounds will be inspired to pursue biomedical education and research.
DATE: -
TEAM MEMBERS: Doris Chin Barry Starr
resource project Professional Development, Conferences, and Networks
Working in collaboration with biomedical researchers from universities in the San Francisco area, across the nation, and abroad, the Exploratorium proposes to develop a high-quality microscopic imaging station for use by museum visitors, students, teachers and Internet visitors. This facility will utilize the highest quality optics and state-of-the-art microscopic techniques including biological staining and sophisticated digital recording. A variety of living specimens fundamental to basic biology, human development, the human genome and health-related research will be displayed. The station will be the lively center of the life sciences' area at the Exploratorium, providing educational content, dramatic imagery and regular demonstrations to reach an audience which ranges from the mildly curious to research scientists. In addition, the Exploratorium will be the first public institution, outside of a few research laboratories, to present live microscopic specimens via video and the Internet in real time. (To date, remote microscopes have generally presented inanimate objects or fixed tissue.) In order to increase student accessibility, subject matter for the imaging station will be integrated into the ongoing middle and high school teacher professional development at the museum. Teachers will be able to use the imaging station to conduct their own experiments, develop classroom explorations, take away images, access the website in their classrooms, or share materials with other teachers.
DATE: -
TEAM MEMBERS: Charles Carlson