Skip to main content

Community Repository Search Results

resource project Media and Technology
Purpose: This project will develop and test Happy Atoms, a physical modeling set and an interactive iPad app for use in high school chemistry classrooms. Happy Atoms is designed to facilitate student learning of atomic modeling, a difficult topic for chemistry high school students to master. Standard instructional practice in this area typically includes teachers using slides, static ball and stick models, or computer-simulation software to present diagrams on a whiteboard. However, these methods do not adequately depict atomic interactions effectively, thus obscuring complex knowledge and understanding of their formulas and characteristics.

Project Activities: During Phase I (completed in 2014), the team developed a prototype of a physical modeling set including a computerized ball and stick molecular models representing the first 17 elements on the periodic table and an iPad app that identifies and generates information about atoms. A pilot study at the end of Phase I tested the prototype with 187 high school students in 12 chemistry classes. Researchers found that the prototype functioned as intended. Results showed that 88% of students enjoyed using the prototype, and that 79% indicated that it helped learning. In Phase II, the team will develop additional models and will strengthen functionality for effective integration into instructional practice. After development is complete, a larger pilot study will assess the usability and feasibility, fidelity of implementation, and promise of Happy Atoms to improve learning. The study will include 30 grade 11 chemistry classrooms, with half randomly assigned to use Happy Atoms and half who will continue with business as usual procedures. Analyses will compare pre-and-post scores of student's chemistry learning, including atomic modeling.

Product: Happy Atoms will include a set of physical models paired with an iPad app to cover high school chemistry topics in atomic modeling. The modeling set will include individual plastic balls representing the elements of the periodic table. Students will use an iPad app to take a picture of models they create. Using computer-generated algorithms, the app will then identify the model and generate information about its physical and chemical properties and uses. The app will also inform students if a model that is created does not exist. Happy Atoms will replace or supplement lesson plans to enhance chemistry teaching. The app will include teacher resources suggesting how to incorporate games and activities to reinforce lesson plans and learning.
DATE: -
TEAM MEMBERS: Jesse Schell
resource project Media and Technology
This project team will develop and test a prototype of SuperChem VR, a game to support high school students' basic chemistry learning. The prototype will include a set of web-based laboratory modules which will be integrated within a virtual reality headset to allow for a 360-degree visual exploration of the environment. The prototype will also include teacher resources for classroom implementation. In the Phase I pilot research with 3 teachers and 54 students, the project team will examine whether the hardware and software prototype functions as planned, whether teachers are able to integrate it within the classroom environment, and whether students are engaged while using the prototype.
DATE: -
TEAM MEMBERS: Jesse Schell
resource project Media and Technology
Purpose: This project team will fully develop and test SuperChemVR, a virtual environment integrated within a Virtual Reality (VR) headset for an immersive exploration of a chemistry lab. While chemistry labs offer the benefits of hands-on experimentation to help students learn abstract concepts, they are costly to maintain, supervise, and pose safety risks. Virtual chemistry labs for computers and tablets allow students to explore chemistry safely with unlimited resources, and provide immediate feedback and automated assessments, but these "point-and click" experiences are not immersive or hands-on. Immersive VR allows users to fully experience an interactive, 3-Dimensional 360-degree environment.

Project Activities: During Phase I, (completed in 2016), the team developed a prototype of SuperChemVR, including a virtual chemistry lab environment within which students immerse themselves while wearing a VR headset. At the end of Phase I, researchers completed a pilot study with 54 students and three teachers. Results demonstrated that the hardware and software prototype operated as intended, teachers were able to integrate it within the classroom environment, and students were engaged while using the prototype. In Phase II, the team will add content modules and a gameplay narrative to the platform, build the automated feedback mechanism, strengthen the back-end management system, and build out the teacher reporting dashboard. After development is complete, the research team will conduct a larger pilot study to assess the feasibility and usability, fidelity of implementation, and the promise of the SuperChemVR for improving student learning in chemistry. The study will include 10 high school chemistry classrooms, half randomly assigned to use SuperChemVR and half to follow business-as-usual procedures. Researchers will compare pre-and-post scores of student's chemistry learning.

Product: SuperChemVR is a room-scale VR lab and learning game for high school chemistry students. While wearing a VR headset, students will be immersed in a simulated chemistry 3D-environment where they will be challenged to acquire basic lab and safety skills. Through actual, accurate measurement and experimentation, students will improve their understanding of chemistry practices as they learn using science to solve problems. VR will enhance students' chemistry experience by providing instant cleanup, access to infinite resources, and observations at exponentially larger and smaller scales while simulating accurate physical actions in a safe environment. In the game component of the intervention, students will participate in an outer-space adventure that takes place on a derelict spaceship requiring players to use chemistry to survive until they can be rescued. SuperChem VR will be used in the classroom by teachers as a demonstration tool, will provide implementation supports, and will provide teachers with reports on student performance.
DATE: -
TEAM MEMBERS: Jesse Schell
resource research Media and Technology
In this chapter we present the ways in which institutional cultural differences impact the development and implementation of learning activities in informal settings. Five university-based centers for the study of chemistry worked with informal learning professionals to re-envision educational and public outreach activities about science. The projects were part of a broader effort to catalyze new thinking and innovation in informal education and chemistry centers. The set of projects illustrates the broad possibilities for informal learning settings, with projects targeting diverse audiences
DATE:
resource research Media and Technology
Research chemists from the Center for Enabling New Technologies Through Catalysis (CENTC) worked collaboratively with the Liberty Science Center (LSC) to develop a hands-on activity to educate visitors about how small molecules derived from petroleum feedstocks are used to make larger molecules that are then utilized in the production of everyday consumer goods. Researchers, faculty, and students provided the chemistry content and LSC worked with Blue Telescope Studios to create a user-friendly program for the Ideum Multitouch Table. The resulting “Molecule Magic,” an engaging and intuitive
DATE:
TEAM MEMBERS: Center for Enabling New Technology Through Catalysis (CENTC) Abby O'Connor
resource research Media and Technology
This poster was presented at the 2014 AISL PI Meeting. It describes the radio and stage storytelling programs undertaken by the Center for Chemical Evolution, a CCI jointly funded by NSF and NASA.
DATE:
TEAM MEMBERS: NNIN, Georgia Institute of Technology Christopher Parsons Meisa Salaita
resource project Media and Technology
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE: -
TEAM MEMBERS: WGBH Educational Foundation Paula Apsell
resource project Media and Technology
Small Matters is a scientific storytelling project in response to a supplemental funding opportunity designed to pair an NSF Center for Chemical Innovation with an Informal Science Education organization. Meisa Salaita, Director for Education & Outreach for the Center for Chemical Evolution, and Ari Daniel, independent radio and multimedia producer and science journalist, collaborated on this project designed to increase chemical literacy in the general public and promote partnerships between scientists and informal science educators. In the tradition of folklore, educators have used storytelling to stimulate students’ critical thinking skills across and within disciplines, demonstrating an improvement in comprehension and logical thinking, enhancing memory, and creating a motivation and enthusiasm for learning. Within science, storytelling allows learners to experience the how of scientific inquiry, including the intellectual and human struggles of the scientists who are making discoveries. Accordingly, our project uses multimedia and live performance to engage the public in learning about chemistry through storytelling. We have developed a series audio pieces entitled Small Matters aimed at enriching public science literacy, namely within the chemical sciences. The format of these pieces includes standard public radio narrative style, short scientist-narrated nuggets, and imaginative sonic explorations of key chemistry concepts. The stories have been disseminated through a variety of broadcast media connections, including "Living on Earth" and local Atlanta public radio station WABE. In addition to the audio-based science journalism pieces that we have been producing, we have taken the stories we uncovered and brought them to live audiences, integrating chemistry, journalism, and the arts to create a human connection between our scientists and the public. The radio pieces were woven in with performances of poetry, comedy and satire in collaboration with literary performing arts group The Encyclopedia Show to create a live variety show (May 2013). In addition, scientists identified through our production of Small Matters were trained in storytelling techniques and brought together for an evening of live storytelling in Atlanta with The Story Collider (March 2014).
DATE: -
TEAM MEMBERS: NSF/NASA Center for Chemical Evolution Meisa Salaita
resource research Media and Technology
This study explored whether adding a haptic interface (that provides users with somatosensory information about virtual objects by force and tactile feedback) to a three-dimensional (3D) chemical model enhanced students' understanding of complex molecular interactions. Two modes of the model were compared in a between-groups pre- and posttest design. In both modes, users could move and rotate virtual 3D representations of the chemical structures of the two molecules, a protein and a small ligand molecule. In addition, in a haptic mode users could feel the interactions (repulsive and attractive
DATE:
TEAM MEMBERS: Petter Bivall Shaaron Ainsworth Lena Tibell
resource evaluation Media and Technology
Fort Worth Museum of Science and History (FWMSH) contracted with Randi Korn & Associates, Inc. (RK&A) to evaluate CSI: The Experience National Science Foundation- and Science Museum Exhibit Collaborative-funded project focused on forensic science. The project included a museum exhibition and an online gaming experience (Web Adventure) targeting children ages 9 to 17 and adults. A summative evaluation explored visitors' overall experiences, understanding of forensic sciences, and the research question: Does the Web Adventure extend exhibition visitors' learning of forensic science? A process
DATE:
TEAM MEMBERS: Randi Korn & Associates, Inc. Fort Worth Museum of Science and History
resource project Media and Technology
Hidden Universe is a multi-faceted project built around production of a 2D/3D giant screen film. The goal is to inspire, engage, and excite viewers about the mysterious worlds hidden around us and the science and technology that reveal them. The film will illuminate natural wonders that are invisible to the naked eye, such as objects and processes that are too slow, too fast, and too small to be seen without advanced technologies. It will include nanoscience and microbiology research and developing wavelength technologies such as ultrafast lasers. The project will employ cutting-edge technology to bring arresting footage of micro- and nanobiology to the giant screen to offer audiences (1) deeper understanding of natural phenomena that comes through observation and (2) greater appreciation of modern technology that makes such observation possible. The film story will focus on demonstrating science as inquiry and underscore the crucial link between scientific inquiry and technological advances. The film project will be enhanced with educational outreach materials, professional development opportunities for educators, and an interactive website. Hidden Universe will be produced by the large format team at National Geographic's Cinema Ventures group and its production partner Blacklight Films. The project brings to the table the extensive resources of the National Geographic Society. In addition, the project will partner with a select group of scientific research centers (Chester Carlson Center for Imaging Science at the Rochester Institute of Technology and the Nanobiotechnology Center at Cornell) and leaders in informal education (Boston Museum of Science and Girl Scouts) to extend the reach and impact of the project. The project will add to its list of partners by working with the D.C. Public Schools and Teach for America to find new ways to intersect with teachers and students in underserved areas. The project will employ Multimedia Research and Knight-Williams Research Communications to conduct the project\'s formative and summative evaluations, respectively.
DATE: -
TEAM MEMBERS: Lisa Truitt Barbara Flagg
resource project Media and Technology
This multimedia project tells the human story of the long, continuing quest to identify, understand, and organize the basic building blocks of matter leading to the Periodic Table of Elements. Project deliverables include a two hour PBS documentary; a website on the Periodic Table and discovery of the elements; a Teacher\'s Guide; and an Outreach Plan led by the St. Louis Science Center and nine other science centers. The target audiences are adults with an interest in science, inner-city youth, and high school chemistry teachers and their students. Partners include Moreno/Lyons Productions, the American Chemical Society (ACS), the Chemical Heritage Foundation; the St. Louis Science Center; and Oregon Public Broadcasting. The national broadcast and outreach activities are intended to complement the International Year of Chemistry (IYC) 2011, furthering the opportunity to enhance the public understanding of chemistry. The goal of the project is to reveal science as an intensely human process of discovery through stories of some of the greatest scientists. The two-hour PBS special will tell a "detective story" of chemistry, stretching from the ancient alchemists to today's efforts to find stable new forms of matter. Among key characters will be Joseph Priestley, Antoine Lavoisier, Humphry Davy, Dmitrii Mendeleev, Marie Curie, Harry Moseley, and Glenn Seaborg. The program will show both their discoveries and the creative process, using reenactments shot with working replicas of their original lab equipment. Interwoven with history will be segments on modern chemical research and the real-world consequences of the discoveries. A two-part Outreach Plan is aimed at engaging inner-city youths through a network of ten science centers led by the St. Louis Science Center and at reaching a broader audience through events, activities, and publications offered by ACS during National Chemistry Week and IYC 2011. The television program is projected to reach three million viewers during its multiple broadcasts over premiere week, increasing to five million or more with subsequent repeat broadcasts and DVD distribution. It is estimated that 6,500 underrepresented urban teens will participate in the hands-on activities in the ten science centers during IYC 2011. The website is intended to become a resource extending the reach and impact of the project for a decade or more. The summative evaluation will assess the extent to which the project accomplishes the goals of enhancing public understanding of chemistry, affecting public attitudes toward chemistry and chemists, and improving the understanding of the nature of science. Three studies will be conducted. The first will be an in-depth evaluation of the program and Web site with a sample of 150 adult PBS viewers using a two-group post-test randomized study design. The second study will evaluate the outreach effort with diverse audiences at the local level prior to and during National Chemistry Week using on site observations, surveys, and interviews to capture participant feedback at local events. The third study will evaluate high school educators' use of the Teacher's Edition & Guide.
DATE: -
TEAM MEMBERS: Kathryn Dietz Bonnie Waltch Stephen Lyons Judy Kass Barbara Flagg