Skip to main content

Community Repository Search Results

resource project
iPlan: A Flexible Platform for Exploring Complex Land-Use Issues in Local Contexts
DATE: -
TEAM MEMBERS:
resource project Exhibitions
The Thinkery will develop research-based exhibit materials and community resources to support adults as learning facilitators for their children. The museum will formalize a decade-long research relationship with a nationally recognized expert in child development and learning to establish new infrastructure and capacity to translate best practices from learning sciences into museum operations. The museum will create a 180-foot learning hub that blends elements of an exhibition and research space, allowing the prototyping and evaluation of exhibits by engaging visitors as active participants in research studies. The project team will produce bilingual exhibit prompts cards, signage, and enhancements to educate and inform parents by offering STEAM knowledge, inquiry questions, play-based learning and child development information. Additional project activities will include the development and implementation of related staff trainings and the establishment of an online parent resource gallery.
DATE: -
TEAM MEMBERS: Matt Stalberger
resource evaluation Media and Technology
This summary report gives an overview of the Bringing Science Home with PEEP project research and key findings.
DATE:
TEAM MEMBERS: Megan Silander Michelle Cerrone Leslie Cuellar Lindsey Hiebert Jennifer Stiles
resource research Public Programs
Playscapes are intentionally designed nature-focused play environments for young children where children learn through exploration, discovery, play and adult supported provocations. The primary objective of this ongoing research-in-service to practice project is to engage in a collaborative mixed methods study to investigate aspects of science, technology, engineering, and math (STEM) learning with regard to playscape design, teacher efficacy, children’s learning, and dosage effects. It builds upon a previous NSF Pathways study. The goal of this poster is to showcase the usable research and
DATE:
TEAM MEMBERS: Victoria Carr Rhonda Brown Heidi Kloos Leslie Kochanowski Sue Schlembach Catherine Maltbie
resource project Public Programs
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by engaging in hands-on field experience, laboratory/project-based entrepreneurship tasks and mentorship experiences. This ITEST project aims to research the STEM career interests of late elementary and middle-school students and, based on the results of that research, build an informal education program to involve families and community partners to enhance their science knowledge, attitudes, experiences, and resources. There is an emphasis on underrepresented and low income students and their families.

The project will research and test a new model to promote the development of positive attitudes toward STEM and to increase interest in STEM careers. Phase 1 of the project will include exploratory research examining science capital and habitus for a representative sample of youth at three age ranges: 8-9, 9-10 and 11-12 years. The project will measure the access that youth have to adults who engage in STEM careers and STEM leisure activities. In phase II the project will test a model with a control group and a treatment group to enhance science capital and habitus for youth.
DATE: -
resource research Public Programs
This video presents reflections on SCIENCES: Supporting a Community’s Informal Education Needs—Confidence and Empowerment in STEM. SCIENCES brought together Eden Place Nature Center and the Chicago Zoological Society to collaboratively support environmental conservation and lifelong scientific learning in the Fuller Park neighborhood of Chicago. The SCIENCES project began in 2013 and focused on adapting existing educational programs into a suite of environmentally focused science learning opportunities for professional, student, and public audiences in the Fuller Park neighborhood
DATE:
resource research Public Programs
In The Nature of Community: SCIENCES, we share the lessons learned from an innovative partnership designed to leverage the strengths of two nonprofit organizations—a large cultural institution and a smaller, deeply-rooted community-based organization, both of which offer informal science education expertise. You’ll read first-hand reflections of how staff members, community leaders and members, children, and adults experienced this partnership: the expectations, surprises, challenges, successes, and lessons learned. We hope the description of this partnership inspires other organizations to
DATE:
resource project Media and Technology
This project will research and develop the Circuit, a mobile phone and web-based application that will empower families and the general public to discover the broad spectrum of informal Science, Technology, Engineering and Mathematics (STEM) opportunities that exist in most communities. These informal STEM resources include science and children's museums, science and computer camps, maker spaces, afterschool programs, citizen science and much more. There is currently no "one-stop" searching for these resources. Instead, participants must conduct multiple, inefficient Internet searches to find the sought for STEM resources. The Circuit will enable users to efficiently search a rich informal STEM database, identifying resources by location, geography, age levels, science discipline, type of program and other factors. The Circuit builds on SciStarter, an existing online platform that connects thousands of prospective and active citizen scientists to citizen science projects. SciStarter has made possible the collection and organization of several thousand citizen science projects that would otherwise be scattered across the web. The Circuit will build on SciStarter's technical achievements in the citizen science sector, while systematically encompassing the offerings of established national networks. By integrating existing networks of informal STEM resources, the app will afford the public with unrivaled access to informal STEM opportunities, while collecting data that reveals patterns of engagement towards understanding factors of influence between different types of STEM experiences.

The app will provide researchers with new opportunities for researching how families and adults participate in the ecosystem of informal STEM resources in their communities. The Circuit will develop web tools to aggregate and organize digital content from trusted, currently siloed, informal STEM networks of content providers. These include science festivals, science and children's museums, the American Association for the Advancement of Science (AAAS), and Discover Magazine (3 million readers), the largest general interest science publication. Each content partner will feed the app with information directly or through their membership and encourage adoption of The Circuit within their respective communities. The project will design digital tools, including APIs (application program interfaces) to acquire and share digital content, embeddable tools to record and analyze data about movement, engagement, and persistence across domains, and social media tools and related APIs to distribute, track, and analyze content, engagement and demographics. (An API is a code that allows two software programs to communicate with each other.) The project will conduct small-scale, proof-of-conduct studies, to test the viability of the platform to support future, independent full-scale research. An analytics dashboard will be designed and tested with partners, researchers, and evaluators to ensure access to data on patterns of visits, clicks, referrals, searches, "joins," bookmarks, shares, contributions, user-locations, persistence, and more, within and across domains. Because each partner will feed their analytics into the shared dashboard, this will provide unprecedented and much-needed data to advance research in informal STEM learning. The Circuit will allow the tracking of patterns of engagement across networks and programs. Anonymized analytics of behavioral data from end users of The Circuit will support new approaches to advance evidence-based understanding of connected informal STEM learning by exhibiting engagement patterns across informal STEM domains. Through volunteer participation by the public, the Circuit will explore the geographic and demographic patterns of participants in the system, and derive important design lessons for its own and future efforts to create curated systems of connected learning across STEM education in informal settings.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
resource project Exhibitions
Museums, science centers, zoos and other informal science education (ISE) institutions often focus on the idea of "authenticity" to engage the public. Authenticity includes providing something real, original, or even awe-inspiring to the visitor or learner--be it an object, a context, or an experience. While those educators, exhibit designers, and program developers who work in ISE settings often recognize authenticity as an important part of many informal learning experiences, this may be simply be an assumption driven by tradition in practice versus a strategy supported by evidence. This project seeks to better understand how and/or why "the real thing" may (or may not be) important for supporting informal science learning. By examining what is already known about authenticity and learning, the project will inform best practices in ISE as well as point to gaps in knowledge that might need further research. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This research synthesis takes a systematic approach to identify and compile both theoretical and empirical literature to better understand the role authenticity may play in supporting informal science learning. This project will gather ISE literature related to the effects of "authenticity" on learner outcomes, and will look to neighboring disciplines such as psychology, anthropology, media studies, linguistics, marketing and others to seek relevant theoretical perspectives and empirical work that might further understanding of the potential role of authenticity in ISE. The initial phase of the project will focus on gathering theoretical perspectives and positions that help explain the value or importance (or perhaps non-importance) of "realness" as it relates to learning, interest, and experience. A panel of experts from multiple disciplines will convene to help identify key perspectives and frameworks that may clarify the role or impacts of authenticity. A second phase focuses on gathering and assessing empirical studies that support (or refute) the relevant perspectives and theories identified from the initial multi-disciplinary foray into authenticity. To ensure breadth and depth of review, the PIs, research librarians, graduate students, and special topics classes will engage in identifying, evaluating, summarizing, and synthesizing the relevant research (including gray literature) to produce an initial synthesis report that will be reviewed by select experts from the earlier panel. A second convening of practitioners (exhibit developers, educators, program designers, etc.) will be used to further contextualize the findings in ways that may better inform current practices in providing effective ISE. The resulting products include a peer-reviewed research synthesis and a practitioner handbook.

The proposed project's Broader Impacts lie in the potential to inform ISE practice in exhibit and program design and in the delivery of ISE-related experiences. Although the importance of the authenticity of an object or experience may ultimately be determined by the individual, this study will be able to provide guidance to help practitioners and scholars in making sometimes difficult design choices. Such insights may also inform other learning environments (e.g. the classroom) as well as other disciplinary areas (e.g. history, anthropology, art).

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
resource project Resource Centers and Networks
In this NSF INCLUDES Design and Development Launch Pilot the institutions of "Building on Strengths" propose to build and pilot the infrastructure, induction process, and early implementation of the Mathematician Affiliates of Color network. This network will consist of mathematicians of color from across academia and industry who want to invest time in, share their expertise with, and learn from students of color and their teachers. Building on Strengths will draw on basic needs cognitive theory to support these interactions and will focus narrowly on short and moderate term collaborations (from one month to a semester) between visiting mathematicians, students, and collaborating teachers that will involve three specific types of interactions: doing mathematics together as a habits-of-mind practice, talking about the discipline of mathematics and the experiences of mathematicians of color in that discipline, and relationship-building activities. The foundational infrastructure developed in the project will include systems for recruitment, selection and induction, a process for pairing affiliate mathematicians with classrooms, and support structures for the collaborations. To support the goals of the network a prototype virtual space will be developed in which real-time artifacts can be collected and shared from the classroom interactions. While Building on Strengths will pilot this program in the secondary context, once a viable model is established, scaling to K-16, as well as to other STEM fields, will be possible.

The research study in the project uses an exploratory sequential mixed-methods design and will be conducted in two phases. In the first, quantitative, phase of the study the following questions will be addressed: (1) Is the teacher-mathematician collaboration associated with a change for students in perception of basic human needs being met, mathematical or racial identities, or beliefs about mathematics or who can do mathematics? (2) Is the teacher-mathematician collaboration associated with a change for adults in perceptions of the role of basic needs or in adults' identities or beliefs about mathematics or who can do mathematics? In the second, qualitative, phase of the study, two types of interactions will be selected for in-depth qualitative study, identifying cases where groups of students experienced changes in their needs, identity, and beliefs. In this qualitative case-centered phase, the following questions will be explored: (1) What is the nature of the mentor-student interaction? (2) What aspects of the intervention do students feel are most relevant to them? (3) How did the implementation of the intervention differ from the anticipated intervention? The results of the study will help improve the infrastructure for, and better support the interactions between, mathematicians of color, students of color and their mathematics teachers; the outcomes will also shed light on how students experience their interactions.
DATE: -
TEAM MEMBERS: Michael Young Maisha Moses Albert Cuoco Eden Badertscher
resource project Public Programs
Northern ecosystems are rapidly changing; so too are the learning and information needs of Arctic and sub-Arctic communities who depend on these ecosystems for wild harvested foods. Public Participation in Scientific Research (PPSR) presents a possible method to increase flow of scientific and local knowledge, enhance STEM-based problem solving skills, and co-create new knowledge about phenology at local and regional or larger scales. However, there remain some key challenges that the field of PPSR research must address to achieve this goal. The proposed research will make substantial contributions to two of these issues by: 1) advancing theory on the interactions between PPSR and resilience in social-ecological systems, and 2) advancing our understanding of strategies to increase the engagement of youth and adults historically underrepresented in STEM, including Alaska Native and indigenous youth and their families who play an essential role in the sustainability of environmental monitoring in the high latitudes and rural locations throughout the globe. In particular, our project results will assist practitioners in choosing and investing in design elements of PPSR projects to better navigate the trade-offs between large-scale scientific outcomes and local cultural relevance. The data collected across the citizen science network will also advance scientific knowledge on the effects of phenological changes on berry availability to people and other animals.

The Arctic Harvest research goals are to 1) critically examine the relationship between PPSR learning outcomes in informal science environments and attributes of social-ecological resilience and 2) assess the impact of two program design elements (level of support and interaction with mentors and scientists, and an innovative story-based delivery method) on the engagement of underserved audiences. In partnership with afterschool clubs in urban and rural Alaska, we will assess the impact of participation in Winterberry, a new PPSR project that investigates the effect of changes in the timing of the seasons on subsistence berry resources. We propose to investigate individual and community-level learning outcomes expected to influence the ability for communities to adapt to climate change impacts, including attributes of engagement, higher-order thinking skills, and their influence on the level of civic action and interest in berry resource stewardship by the youth groups. Using both quantitative and qualitative approaches, we compare these outcomes with the same citizen science program delivered through two alternate methods: 1) a highly supported delivery method with increased in-person interaction with program mentors and scientists, and 2) an innovative method that weaves in storytelling based on elder experiences, youth observations, and citizen science data at all stages of the program learning cycle. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project also has support from the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Katie Spellman Elena Sparrow Christa Mulder Deb Jones
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The goal of this project is to make 21st century quantum science comprehensible and engaging to non-expert informal adult learners. This project has strong potential to add new knowledge about the public's perception and understanding of quantum physics. This scientific content is often difficult for informal audiences to grasp, and there are relatively few accessible learning resources for a non- professional audience. The development of this online, interactive resource with short animations, graphics, and simulations has strong potential to fill this gap. It will develop a visually driven online resource to engage non-expert audiences in understanding the basics of quantum physics. The web design will be modular, incorporating many multimedia elements and the structure will be flexible allowing for future expansion. All content would be freely available for educational use. There is potential for extensive reach and use of the resources by informal adult learners online as well as learners in museums, science centers, and schools. Project partners are the Joint Quantum Institute at the University of Maryland and the National Institute of Standards and Technology, College Park. An independent evaluation of the project will add new knowledge about informal learners' perceptions and/or knowledge about quantum science and technology. An initial needs assessment via focus groups with the general public will be designed to find out more about what they already know about quantum physics topics and terminology, as well as what they want to know and what formats they prefer (games, simulations, podcasts, etc.). In person user testing will be used with early versions of the project online resource using a structured think-aloud protocol. Later in year 1 and 2, online focus groups with the general public will be conducted to learn what they find engaging and what they learned from the content. Iterative feedback from participants during the formative stage will guide the development of the content and format of the online resources. The Summative Evaluation will gather data using a retrospective post-survey embedded with a pop-up link on the Atlas followed by interviews with a subset of online users. Google Analytics will be used to determine the breadth and depth of their online navigation, what resources they download, and what websites they visit afterward. A post-only survey of undergraduate and graduate students who participated in resource development will focus on changes in students' confidence around their science communication skills and level of quantum physics understanding.
DATE: -
TEAM MEMBERS: Emily Edwards Curtis Suplee