Skip to main content

Community Repository Search Results

resource project Media and Technology
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at the University of Colorado. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
DATE: -
TEAM MEMBERS: Nichole Pinkard
resource project Media and Technology
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at DePaul University. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
DATE: -
TEAM MEMBERS: Bill Penuel Tamara Sumner Nichole Pinkard
resource project Public Programs
Community education with regard to science comes in many forms and is usually designed to address issues within that community. In this proposal, land use is the focus. This is a general topic and applicable in nearly all locations within communities and in the State. In this case, the topic is used to educate adults and high school students providing each with unique identities. Using satellite-enabled tools, the topology of an area can be mapped in detail and assessed for use thus enabling science education for both adults and high school students. The studies will involve intergenerational learning which is an area needing additional study. Also, the proposers are going to broaden the scope so that it impacts several different areas in the State of Connecticut. This is important because in doing so it will include the diversity of cultures within the State and the education results will reflect this diversity. As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This proposed effort aims to promote lifelong STEM learning through a focus on conservation, geospatial technology and community engagement. The goals are to: (1) develop particular STEM knowledge and skills, and foster STEM identity authoring/learning in two disparate groups of lifelong learners, and (2) gain a deeper understanding of the ways that this learning occurs through research and evaluation. The project will develop an educational program that focuses on conservation science and recent advances in web-enabled geospatial technologies (geographic information systems, remote sensing, and global positioning systems) that, for the first time, make these technologies accessible and attainable for the public. The focus will be on urban and rural areas with underrepresented populations of STEM learners. Two groups of lifelong learners will be targeted: adult volunteers involved with community land conservation issues, and high school-aged adolescents enabling the project to investigate the processes and impacts of intergenerational learning.
DATE: -
TEAM MEMBERS: John Volin David Moss David Campbell Chester Arnold Cary Chadwick
resource research Public Programs
Young adulthood, typically defined as between the ages of 18 and 25, is a critical period of growth during which young people acquire the education and training that serve as the basis for their later occupations and income (Arnett, 2000). The successful transition from adolescence to early adulthood requires youth to have the skills and resources to graduate high school and then go to college or enter the workforce (Fuligni & Hardway, 2004; Lippman, Atienza, Rivers, & Keith, 2008). To accomplish these tasks in advanced urban societies, young adults need a wide range of social, cognitive
DATE:
TEAM MEMBERS: Julie O'Donnell Sandra Kirkner
resource research Public Programs
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The SCIENCES project aims to create a STEM ecosystem in Fuller Park, a chronically, severely under-resourced urban community in Chicago.
DATE:
resource project Public Programs
Families and school-aged constituents at 30 urban, inner-city neighborhood community-based organizations and teachers and students in earth science classes in 40 middle schools. Intent: This project will prepare neighborhood and community leaders in Philadelphia to use simple but effective observation tools and NASA’s educational web content to help their inner-city Philadelphia neighbors learn about space science and technology – and about their city and themselves – by knowledgably exploring the sky. Project Goals: 1. Create multiple opportunities for inner-city children, adults and families to observe and learn about the solar system through neighborhood and city-wide events. 2. Equip CBO’s with the knowledge, skills and materials they need to make space science-related events and activities a sustained part of programming for their constituents. 3. Stimulate interest and engagement in NASA’s missions and resources among residents of traditionally underserved, inner-city neighborhoods through astronomy experiences and NASA’s websites. 4. Create and strengthen collaborative ties between The Franklin Institute, CBO’s, city residents, and local amateur astronomers. Programs/Products produced: 1. Repeatable ‘Galileoscope’ workshops and activities in 30 CBO’s 2. Solar observing activities for 30 CBO’s and 40 middle schools. 3. School assembly-type audience interactive program about observational astronomy for use in schools and community organizations. 4. Recurring neighborhood star parties facilitated through on-going partnerships with local amateur astronomy clubs. 5. Participation in city-wide star party as part of the annual Philadelphia Science Festival.
DATE: -
TEAM MEMBERS: Frederic Bertley Derrick Pitts
resource project Public Programs
The Chicago Zoological Society (CZS) in collaboration with Eden Place Nature Center, the Fuller Park Community Corporation, and the University of Illinois at Chicago (UIC) will implement the SCIENCES Program, Supporting a Community's Informal Education Needs: Confidence and Empowerment in STEM. The primary goals of this Full Scale Development project are to broaden access to and participation in environmental science, strengthen partnerships between CZS, Eden Place, and UIC, and gain insights into the 'ecosystemic' learning model which promotes scientific literacy and agency in the community. The project targets a low-resource community with a minority audience while the secondary audience is informal science learning organizations and researchers who will advance research in informal learning. The theoretical framework for the project design draws on conservation psychology, informal science learning, civic ecology education, and urban science education to create an ecosystematic, geographically centered approach. The deliverables include research, curriculum, and engaging hands-on programs for youth, families, adults, and teachers, reaching both in-school and out-of-school audiences, in addition to the SCIENCES Implementation Network. Three potential curriculum themes to be explored are water conservation and protection, pollinators for healthy ecosystems, and community resilience to climate change. The SCIENCES project offers a comprehensive suite of engaging programs for community audiences. For example, the year-long Zoo Adventure Passport (ZAP) program for families includes hands-on experiments and field trips, while project-based learning experiences enable teens to create wetlands, design interpretive signage, and develop associated public programming. School-based programs include professional development for teachers on the Great Lakes ecosystem and invasive species. Existing programs that have been previously evaluated and demonstrated to show learning impacts will be adapted and modified to meet the goals of the ecosystemic learning model by providing multiple learning opportunities. New learning resources will also be created to support the content themes and provide continuity. The result will be a comprehensive approach that ensures deep community engagement by individuals, families, and organizations, with cohesiveness provided by the overarching content themes which broaden access to STEM learning resources and leverages partnerships. The project includes both a research and evaluation plan. The primary research question to be addressed is: How does a large informal science learning institution work with a community-based organization to support environmental scientific literacy and agency at all levels of the community? A sociocultural framework will be used for this mixed-methods case study research. Study participants include community leaders, youth, parents, teachers, and staff from Eden Place. The case study sample will include 20 focal individuals drawn from the participant groups and approximately 300 survey participants. Case study data will be triangulated with evaluation data and analyzed using a grounded theory approach. By examining changes from the baseline following the implementation of the community programs, the findings may provide insight on agency and science literacy among community members. The comprehensive, mixed-methods evaluation plan employs a quasi-experimental design and incorporates front-end, formative, and summative evaluation components. The evaluation questions address the quality of the processes and products, access to environmental science learning opportunities, environmental science literacy, sustainability, and barriers to implementation. An extensive dissemination plan is proposed with a dual emphasis on meeting stakeholders' needs at multiple levels. The evaluation and research teams will emphasize publication in peer reviewed journals and presentations at conferences for informal science education professionals. Findings will be shared with the Fuller Park community stakeholders using creative methods such as one-page research briefs written in layperson's language, videos, and recorded interviews with participants. The local project Advisory Board will also be actively involved in the dissemination of findings to community constituents. The SCIENCES National Amplification Network will be created and work collaboratively with the American Association of Zoos and Aquariums and the Metropolitan Green Spaces Alliance to disseminate the model. Collectively, the activities and deliverables outlined in this proposal will advance the discovery of sustainable models of community-based learning while the research will advance the understanding of informal learning support for science literacy and agency.
DATE: -