Skip to main content

Community Repository Search Results

Current Search

resource project Informal/Formal Connections
This Innovations in Development project explores radical healing as an approach to create after-school STEM programming that welcomes, values and supports African American youth to form positive STEM identities. Radical healing is a strength-based, asset centered approach that incorporates culture, identity, civic action, and collective healing to build the capacity of young people to apply academic knowledge for the good of their communities. The project uses a newly developed graphic novel as a model of what it looks like to engage in the radical healing process and use STEM technology for social justice. This graphic novel, When Spiderwebs Unite, tells the true story of an African American community who used STEM technology to advocate for clean air and water for their community. Youth are supported to consider their own experiences and emotions in their sociopolitical contexts, realize they are not alone, and collaborate with their community members to take critical action towards social change through STEM. The STEM Club activities include mentoring by African American undergraduate students, story writing, conducting justice-oriented environmental sciences investigations, and applying the results of their investigations to propose and implement community action plans. These activities aim to build youth’s capacity to resist oppression and leverage the power of STEM technology for their benefit and that of their communities.

Clemson University, in partnership with the Urban League of the Upstate, engages 100 predominantly African American middle school students and 32 African American undergraduate students in healing justice work, across two youth-serving, community-based organizations at three sites. These young people assume a leadership role in developing this project’s graphic novel and curriculum for a yearlong, after-school STEM Club, both constructed upon the essential components of radical healing. This project uses a qual→quant parallel research design to investigate how the development and use of a graphic novel could be used as a healing justice tool, and how various components of radical healing (critical consciousness, cultural authenticity, self knowledge, radical hope, emotional and social support, and strength and resilience) affect African American youths’ STEM identity development. Researchers scrutinize interviews, field observations, and project documents to address their investigation and utilize statistical analyses of survey data to inform and triangulate the qualitative data findings. Thus, qualitative and quantitative data are used to challenge dominant narratives regarding African American youth’s STEM achievements and trajectories. The project advances discovery and understanding of radical healing as an approach to explicitly value African Americans’ cultures, identities, histories, and voices within informal STEM programming.
DATE: -
TEAM MEMBERS: Renee Lyons Rhondda Thomas Corliss Outley
resource project Media and Technology
Data is increasingly important in all aspects of people’s lives, from the day-to-day, to careers and to civic engagement. Preparing youth to use data to answer questions and solve problems empowers them to participate in society as informed citizens and opens doors to 21st century career opportunities. Ensuring equitable representation in data literacy and data science careers is critical. For many girls underrepresented in STEM, developing a "data science identity" requires personally meaningful experiences working with data. This project aims to promote middle school-aged girls’ interest and aspirations in data science through an identity-aligned, social game-based learning approach. The goals are to create a more diverse and inclusive generation of data scientists who see data as a resource and who are equipped with the skills and dispositions necessary to work with data in order to solve practical problems. The research team will run 10 social clubs and 10 data science clubs mentored by women in data science recruited through the University of Miami’s Institute for Data Science and Computing. Participants will be 250 middle school-aged girls recruited in Miami, FL, and Yolo County, CA, through local and national girls’ organizations. Youth will participate in a data science club and will learn key data science concepts and skills, including data structures, storage, exploration, analysis, and visualization. These concepts will be learned from working with their own data collected in personally meaningful ways in addition to working with data collected by others in the same social game eco-system. The project will also develop facilitator materials to allow adult volunteers to create game-based informal data science learning experiences for youth in their areas. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments and is co-funded by the Innovative Technology Experiences for Students and Teachers (ITEST), which seeks to engage underrepresented students in technology-rich learning environments, including skills in data literacy, and increase students’ knowledge and interest in information and communication technology (ICT) careers.

Researchers will focus on two primary research questions: 1) Across gameplay and club experiences, in what ways do participants engage with data to pursue personal or social goals? 2) How do gameplay and club experiences shape girls’ perceptions of data, data science, and their fit with data and data science? The project will use design-based research methods to iteratively design the game and social club experiences. To ensure that uses of data feel personally and socially meaningful to young girls, the virtual world’s goals, narratives, and activities will be co-designed with girls from groups underrepresented in data science. The project will research engagement with game data in two informal, game-based learning scenarios: organic, self-directed, social play club, and structured, adult-facilitated data science clubs. The research will use a combination of quantitative and qualitative methods including surveys, focus groups, interviews, and gameplay and club observations. Project evaluation will determine how gameplay and club experiences impact participants' attitudes toward and interest in data-rich futures. The project holds the potential for broadening participation and promoting interest in data science by blending game-based learning with the rich social and adult mentoring through club participation. The results will be disseminated through conference presentations, scholarly publications, and social media. The game and facilitator materials will be designed for dissemination and made freely available to the public.
DATE: -
TEAM MEMBERS: Lisa Hardy Gary Goldberger Jennifer Kahn
resource project Exhibitions
Artificial intelligence (AI) is in many of our everyday activities—from unlocking phones to running Internet searches to parking cars. Yet, most instruction on how AI works is only in computer science courses. The unique role that AI plays in making decisions that affect human lives heightens the need for education approaches that promote public AI literacy. Little research has been done to understand how we can best teach AI in informal learning spaces. This project will engage middle school age youth in learning abouts AI through interaction with museum exhibits in science and technology centers. The exhibits employ embodied interactions and creative making activities that involve textiles, music making, and interactive media. The research will build on three exhibit prototypes that teach about concepts including bias in data in machine learning, AI decision-making processes, and how AI represents knowledge. Female-identifying and Title 1 youth will be recruited as participants during the exhibit design iterations and testing. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments

Researchers will explore two key research questions: 1) How can the design of interactive museum exhibits encourage interest development in and learning about AI among learners without a Computer Science background by using embodiment and creative making? and 2) How do embodied interaction and creative making mediate learning about AI in informal learning environments? The project will take a design-based research approach, iteratively building on existing exhibit prototypes and testing them in-situ with learners. Data sources and modes of analysis will include retrospective surveys to assess interest, content knowledge gain, creativity, learning talk analysis of audio recordings, and coding of embodied movements in video recordings. Learning talk analysis will identify instances of joint sensemaking during naturalistic interactions with our exhibit to reveal connections between sensemaking talk; learners' behaviors and embodied actions during real-time collaborative knowledge building; and outcomes in knowledge, interest, and creativity measures as elicited in retrospective surveys. The final set of exhibits will be rigorously evaluated with over 500 museum visitors. The key contributions of this work will include a set of rigorously tested exhibits, publicly available exhibit designs, a set of design guidelines for developing AI literacy museum exhibits, and an improved understanding of the relationship between AI-related learning and interest development, embodiment, and creativity.
DATE: -
TEAM MEMBERS: Brian Magerko Duri Long Jessica Roberts
resource project Professional Development, Conferences, and Networks
Centering Native Traditional Knowledge within informal STEM education programs is critical for learning for Native youth. In co-created, place-based learning experiences for Native youth, interweaving cultural traditions, arts, language, and community partnerships is vital for authentic, meaningful learning. Standardized STEM curricula and Western-based pedagogies within the mainstream and formal education systems do not reflect the nature of Native STEM knowledge, nor do they make deep connections to it. The absence of this knowledge base can reinforce a deficit-based STEM identity, which can directly impact Native youths’ participation and engagement in STEM. Reframing STEM education for Native youth to prioritize the vitality of community and sustainability requires active consideration of what counts as science learning and who serves as holders and conduits of STEM knowledge. As highly regarded holders of traditional and western STEM knowledge, Native educators and cultural practitioners are critical for facilitating Native youths’ curiosity and engagement with STEM. This Innovations in Development project is Native-led and centers Native knowledge, voice, and contributions in STEM through a culturally based, dual-learning approach that emphasizes traditional and western STEM knowledge. Through this lens, a network of over a dozen tribal nations across 20 U.S. states will be established to support and facilitate the learning of Traditional and Western STEM knowledge in a culturally sustaining manner. The network will build on existing programs and develop a set of unique, interconnected, and synchronized placed-based informal STEM programs for Native youth reflecting the distinctive cultural aspects of Native American and Alaska Native Tribes. The network will also involve a Natives-In-STEM Role Models innovation, in which Native STEM professionals will provide inspiration to Native youth through conversations about their journeys in STEM within cultural contexts. In addition, the network will cultivate a professional network of STEM educators, practitioners, and tribal leaders. Network efforts and the formative evaluation will culminate in the development and dissemination of a community-based, co-created Framework for Informal STEM Education with Native Communities.

Together with Elders and other contributors of each community, local leads within the STEM for Youth in Native Communities (SYNC) Network team will identify and guide the STEM content topics, as well as co-create and implement the program within their sovereign lands with their youth. The content, practitioners, and programming in each community will be distinct, but the community-based, dual learning contextual framework will be consistent. Each community includes several partner organizations poised to contribute to the programming efforts, including tribal government departments, tribal and public K-12 schools, tribal colleges, museums and cultural centers, non-profits, local non-tribal government support agencies, colleges and universities, and various grassroots organizations. Programmatic designs will vary and may include field excursions, summer and after school STEM experiences, and workshops. In addition, the Natives-In-STEM innovation will be implemented across the programs, providing youth with access to Native STEM professionals and career pathways across the country. To understand the impacts of SYNC’s efforts, an external evaluator will explore a broad range of questions through formative and summative evaluations. The evaluation questions seek to explore: (a) the extent to which the culturally based, dual learning methods implemented in SYNC informal STEM programs affect Native youths’ self-efficacy in STEM and (b) how the components of SYNC’s overall theoretical context and network (e.g., partnerships, community contributors such as Elders, STEM practitioners and professionals) impact community attitudes and behaviors regarding youth STEM learning. Data and knowledge gained from these programs will inform the primary deliverable, a Framework for Native Informal STEM Education, which aims to support the informal STEM education community as it expands and deepens its service to Native youth and communities. Future enhanced professional development opportunities for teachers and educators to learn more about the findings and practices highlighted in the Framework are envisioned to maximize its strategic impact.
DATE: -
TEAM MEMBERS: Juan Chavez Daniella Scalice Wendy Todd
resource project Professional Development, Conferences, and Networks
Diversity, equity, access, inclusion, and belonging-related change is often difficult to achieve in organizations. In the context of Informal STEM Learning (ISL), this results in inequitable opportunities for both ISL professionals and learners to engage in STEM environments and experiences. For people to thrive in these settings, creative and innovative approaches that address historical and current realities of intersectional marginalization and inequitable norms within informal STEM institutions are necessary to disrupt conventions, institutional barriers, and patterns of inequities. TERC and the Detroit Zoological Society will develop and implement an ISL Equity Resource Center (the Center). The Center will advance equity within the ISL field by cultivating a multi-sector, diverse learning community that designs and conducts evidence-based research and practice, including but not limited to equity-focused leadership, decision-making, theory, methods, project topic selection and design, and budget management.

The Center will cultivate lasting change in the ISL and broader STEM learning ecosystem via (a) sharing more inclusive, culturally relevant, and responsive ISE research and practice; (b) identifying scalable, equity-focused research findings useful in ISL programming; and (c) promoting greater public awareness of the importance of broadening participation in STEM. The Center's primary stakeholders are ISL professionals, including researchers, practitioners, and evaluators. The Center will maintain and expand a digital infrastructure to support innovation and sharing across the ISL field. Through its combined efforts, the Center will raise the visibility and impact of ISL equity-focused research and practice and its contributions to the overall STEM endeavor. The Center will also organize and host the biennial AISL Awardee Meeting. The Center is funded by the Advancing Informal STEM Learning program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
DATE: -
TEAM MEMBERS: Stephen Alkins Diane Miller Lisette Torres-Gerald Pati Ruiz
resource project Informal/Formal Connections
This project is expanding an effective mobile making program to achieve sustainable, widespread impact among underserved youth. Making is a design-based, participant-driven endeavor that is based on a learning by doing pedagogy. For nearly a decade, California State University San Marcos has operated out-of-school making programs for bringing both equipment and university student facilitators to the sites in under-served communities. In collaboration with four other CSU campuses, this project will expand along four dimensions: (a) adding community sites in addition to school sites (b) adding rural contexts in addition to urban/suburban, (c) adding hybrid and online options in addition to in-person), and (d) including future teachers as facilitators in addition to STEM undergraduates. The program uses design thinking as a framework to engage participants in addressing real-world problems that are personally and socially meaningful. Participants will use low- and high-tech tools, such as circuity, coding, and robotics to engage in activities that respond to design challenges. A diverse group of university students will lead weekly, 90-minute activities and serve as near-peer mentors, providing a connection to the university for the youth participants, many of whom will be first-generation college students. The project will significantly expand the Mobile Making program from 12 sites in North San Diego County to 48 sites across California, with nearly 2,000 university facilitators providing 12 hours of programming each year to over 10,000 underserved youth (grades 4th through 8th) during the five-year timeline.

The project research will examine whether the additional sites and program variations result in positive youth and university student outcomes. For youth in grades 4 through 8, the project will evaluate impacts including sustained interest in making and STEM, increased self-efficacy in making and STEM, and a greater sense that making and STEM are relevant to their lives. For university student facilitators, the project will investigate impacts including broadened technical skills, increased leadership and 21st century skills, and increased lifelong interest in STEM outreach/informal science education. Multiple sources of data will be used to research the expanded Mobile Making program's impact on youth and undergraduate participants, compare implementation sites, and understand the program's efficacy when across different communities with diverse learner populations. A mixed methods approach that leverages extant data (attendance numbers, student artifacts), surveys, focus groups, making session feedback forms, observations, and field notes will together be used to assess youth and university student participant outcomes. The project will disaggregate data based on gender, race/ethnicity, grade level, and site to understand the Mobile Making program's impact on youth participants at multiple levels across contexts. The project will further compare findings from different types of implementation sites (e.g., school vs. library), learner groups, (e.g., middle vs. upper elementary students), and facilitator groups (e.g., STEM majors vs. future teachers). This will enable the project to conduct cross-case comparisons between CSU campuses. Project research will also compare findings from urban and rural school sites as well as based on the modality of teaching and learning (e.g., in-person vs. online). The mobile making program activities, project research, and a toolkit for implementing a Mobile maker program will be widely disseminated to researchers, educators, and out-of-school programs.
DATE: -
TEAM MEMBERS: Edward Price Frank Gomez James Marshall Sinem Siyahhan James Kisiel Heather Macias Jessica Jensen Jasmine Nation Alexandria Hansen Myunghwan Shin
resource project Public Programs
Environmental Protectors is a four-year project based at the University of California at Berkeley’s Lawrence Hall of Science. The project is designed to explore the educational and developmental impact of an informal science education programming model that features Community and Citizen Science (CCS) activities for youth of color residing in urban communities. The project is grounded in hypothesis that CCS-focused experiences result in learning outcomes that better position youth of color to more effectively engage in Science, Technology, Engineering, and Mathematics (STEM) related educational, occupational, and civic activities. Each year, in three economically challenged urban communities located throughout the country, youth of color between the ages of 14 and 18 will participate in month-long summer or semester-long afterschool programs. These programs will feature CCS-related activities that include collection, analysis, interpretation and presentation of data that addresses local, pressing environmental quality concerns, such as soil lead contamination and air particulate matter pollution. The project will use a mix of qualitative and quantitative data collection and analysis to assess the impact of youth engagement in these CCS activities. Overall, through its implementation the project aims to generate information useful in nationwide efforts designed to identify effective strategies and approaches that contribute to increasing STEM understanding and interest among youth of color.

Project research is guided by the following questions: A) What are ways to increase STEM engagement among those who have typically been underrepresented in Community and Citizen Science (CCS) research projects in particular and STEM in general? B) When youth are engaged in CCS, what outcomes are observed related to their science agency and science activism? What other unanticipated outcomes are observed related to benefits of participation and learning? C) How does science activism develop in youth participating in CCS?; and D) How do differences in program implementation impact youth outcomes. In particular, the project explores the manner in which particular CCS activities (e.g., project design, data analysis and interpretation, data presentation) impact youth “Science Agency,” defined as a combination of constructs that include Science Identity (i.e., sense of themselves as science thinkers), Science Value (i.e., awareness of the potential benefits of applying scientific practices to addressing critical community health and environmental issues) and Science Competency Beliefs (i.e., belief of themselves as competent science practitioners) and “Science Activism,” defined as a combination of perceived behavioral control and personal salience. Through its execution the project will refine a theory of learning that makes explicit connections between these constructs. Information derived from the execution of the project will contribute to deeper understanding of the potential for using of CCS projects as a key component of science education environments in urban areas and in general.

This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Kevin Cuff Mac Cannady Sarah Olsen
resource project Professional Development, Conferences, and Networks
Developing solutions to large-scale collective problems -- such as resilience to environmental challenges -- requires scientifically literate communities. However, the predominant conception of scientific literacy has focused on individuals, and there is not consensus as to what community level scientific literacy is or how to measure it. Thus, a 2016 National Academies of Sciences, Engineering, and Medicine report, “Science Literacy: Concepts, Contexts, and Consequences,” stated that community level scientific literacy is undertheorized and understudied. More specifically, the committee recommended that research is needed to understand both the i) contexts (e.g., a community’s physical and social setting) and ii) features of community organization (e.g., relationships within the community) that support community level science literacy and influence successful group action. This CAREER award responds to this nationally identified need by iteratively refining a model to conceptualize and measure community level scientific literacy. The model and metrics developed in this project may be applied to a wide range of topics (e.g., vaccination, pandemic response, genetically-modified foods, pollution control, and land-use decisions) to improve a community’s capacity to make scientifically-sound collective decisions. This CAREER award is funded by the Advancing Informal STEM Learning (AISL) and the EHR CORE Research (ECR) programs. It supports the AISL program goals to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. It supports the ECR program goal to advance relevant research knowledge pertaining to STEM learning and learning environments.

The proposed research will conceptualize, operationalize, and measure community level scientific literacy. This project will use a comparative multiple case study research design. Three coastal communities, faced with the need to make scientifically-informed land-use decisions, will be studied sequentially. A convergent mixed methods design will be employed, in which qualitative and quantitative data collection and analyses are performed concurrently. To describe the i) context of each community case, this project will use qualitative research methods, including document analysis, observation, focus groups, and interviews. To measure the ii) features of community organization for each community case, social network analysis will be used. The results from this research will be disseminated throughout and at the culmination of the project through professional publications and conference presentations as well as with community stakeholders and the general public. The integrated education activities include a professional learning certificate for informal science education professionals and STEM graduate students. This certificate emphasizes high-quality community-engaged scholarship, placing students with partners such as museums, farmer’s markets, and libraries, to offer informal learning programs in their communities. This professional learning program will be tested as a model to provide training for STEM graduate students who would like to communicate their research to the public through outreach and extension activities.
DATE: -
TEAM MEMBERS: K.C. Busch
resource project Public Programs
Many Black youth in both urban and rural areas lack engaging opportunities to learn mathematics in a manner that leads to full participation in STEM. The Young People’s Project (YPP), the Baltimore Algebra Project (BAP), and the Education for Liberation Network (EdLib) each have over two decades of experience working on this issue. In the city of Baltimore, where 90% of youth in poverty are Black, and only 5% of these students meet or exceed expectations in math, BAP, a youth led organization, develops and employs high school and college age youth to provide after-school tutoring in Algebra 1, and to advocate for a more just education for themselves and their peers. YPP works in urban or rural low income communities that span the country developing Math Literacy Worker programs that employ young people ages 14-22 to create spaces to help their younger peers learn math. Building on these deep and rich experiences, this Innovations in Development project studies how Black students see themselves as mathematicians in the context of paid peer-to-peer math teaching--a combined social, pedagogical, and economic strategy. Focusing primarily in Baltimore, the project studies how young people grow into new self-definitions through their work in informal, student-determined math learning spaces, structured collaboratively with adults who are experts in both mathematics and youth development. The project seeks to demonstrate the benefits of investing in young people as learners, teachers, and educational collaborators as part of a core strategy to improve math learning outcomes for all students.

The project uses a mixed methods approach to describe how mathematical identity develops over time in young people employed in a Youth-Directed Mathematics Collaboratory. 60 high school aged students with varying mathematical backgrounds (first in Baltimore and later in Boston) will learn how to develop peer- and near-peer led math activities with local young people in informal settings, after-school programs, camps, and community centers, reaching approximately 600 youth/children. The high school aged youth employed in this project will develop their own math skills and their own pedagogical skills through the already existing YPP and BAP structures, made up largely of peers and near-peers just like themselves. They will also participate in on-going conversations within the Collaboratory and with the community about the cultural significance of doing mathematics, which for YPP and BAP is a part of the ongoing Civil Rights/Human Rights movement. Mathematical identity will be studied along four dimensions: (a) students’ sequencing and interpretation of past mathematical experiences (autobiographical identity); (b) other people’s talk to them and their talk about themselves as learners, doers, and teachers of mathematics (discoursal identity); (c) the development of their own voices in descriptions and uses of mathematical knowledge and ideas (authorial identity); and (d) their acceptance or rejection of available selfhoods (socio-culturally available identity). Intended outcomes from the project include a clear description of how mathematical identity develops in paid peer-teaching contexts, and growing recognition from both local communities and policy-makers that young people have a key role to play, not only as learners, but also as teachers and as co-researchers of mathematics education.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Jay Gillen Maisha Moses Thomas Nikundiwe Naama Lewis Alice Cook
resource project Public Programs
This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential science, technology, engineering, and mathematics (STEM) learning from short duration experiences such as field trips. Although informal learning experiences can greatly contribute to interest in and knowledge of science, there is a shared concern among educators and researchers that students may have difficulty recalling and using scientific information and practices emphasized during these experiences, even though doing so would further their science learning. Nonetheless, science learning is rarely, if ever, a "one-shot deal." Children acquire knowledge about science cumulatively across different contexts and activities. Therefore, it is important that informal science learning institutions identify effective practices that support the consolidation of learning and memory from exhibit experiences to foster portable, usable knowledge across contexts, such as from informal science learning institutions, to classrooms, and homes. To this end, this Research in Service to Practice project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences. The project promises to increase learning for the 9,000+ 5th and 6th grade students from across the rurality and growing diversity of the state of Maine who annually participate in LabVenture, a 2.5-hour exploration of the Gulf of Maine ecosystem at Gulf of Maine Research Institute. The research will provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions. This project is funded by the Advancing Informal STEM Learning (AISL) and the Discovery Research PreK-12 (DRK-12) programs. It supports the AISL program goals to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. It supports the DRK-12 program goal of enhancing the learning and teaching of STEM by preK-12 students and teachers.

The project is grounded in the idea that visual representations, including drawings, can both enhance science learning and encourage reflection on doing science that can support extension of that learning beyond a singular informal science experience. The project uses design-based research to address the following research questions: (1) Does reflection during an informal science learning experience promote students’ retention and subsequent use of science information and practices that are part of the experience? (2) Does interpreting and constructing visual representations, such as drawings, improve students’ understanding and retention of information, and if so, how and when? and (3) Does combining visual representations and narrative reflections confer benefits on students’ science learning and engagement in science practices both during the informal learning experience, and later in their classrooms and at home? These questions will be pursued in collaboration with practitioners (both informal educators and classroom teachers) and a diverse team of graduate and undergraduate student researchers. Approximately 600 student groups (roughly 3000 individual students) will be observed during the LabVenture experience, with further data collection involving a portion of these students at school and at home. The project will yield resources and video demonstrations of field-tested, empirically based practices that promote engagement with visual representations and reflection, and science understandings that can travel within students' learning ecosystem. In support of broadening participation, the undergraduate/graduate student researchers will gain wide understanding and experience connecting research to practice and communicating science to academic and nonacademic audiences.
DATE: -
TEAM MEMBERS: David Uttal Amanda Dickes Leigh Peake Catherine Haden
resource project Public Programs
Milwaukee has established itself as a leader in water management and technology, hosting a widely recognized cluster of industrial, governmental, nonprofit, and academic activity focused on freshwater. At the same time, Milwaukee faces a wide range of challenges with freshwater, some unique to the region and others common to cities throughout the country. These challenges include vulnerability to flooding and combined sewer overflows after heavy rainfall, biological and pharmaceutical contamination in surface water, lead in drinking water infrastructure, and inequity in access to beaches and other recreational water amenities. Like other cities, Milwaukee grapples with the challenges global climate change imposes on urban water systems, including changing patterns of precipitation and drought.

These problems are further complicated by Milwaukee's acute racial and economic residential segregation. With a population of approximately 595,000, embedded within a metropolitan area of over 1.5 million, Milwaukee remains one of the country's most segregated cities. There is increasing urgency to engage the public--and especially those who are most vulnerable to environmental impacts--more deeply in the stewardship of urban water and in the task of creating sustainable urban futures. The primary goal of this four-year project is to foster community-engaged learning and environmental stewardship by developing a framework that integrates art with Science, Technology, Engineering, and Mathematics (STEM) experiences along with geography, water management, and social science. Synergies between STEM learning and the arts suggest that collaborations among artists, scientists, and communities can open ways to bring informal learning about the science of sustainability to communities.

WaterMarks provides an artist generated conceptual framework developed by Mary Miss / City as Living Laboratory (CALL) to help people better understand their relationship to the water systems and infrastructure that support their lives. Project activities include artist/scientist/community member-led Walks, which are designed to engage intergenerational participants both from the neighborhoods and from across the city, in considering the conditions, characteristics, histories, and ecosystems of neighborhoods. Walks are expanded upon in Workshops with residents, local scientists/experts, and other stakeholders, and include exploring current water-related environmental challenges and proposing solutions. The Workshops draw on diverse perspectives, including lived experience, scientific knowledge, and policy expertise. Art projects created by local artists amplify community engagement with the topics, including programming for teens and young adults. Free Wi-Fi will be integrated into various Marker sites around the city providing access to online, self-guided learning opportunities exploring the water systems and issues facing surrounding neighborhoods. Current programming focuses primarily on Milwaukee's predominantly African American near North Side and the predominantly Latinx/Hispanic near South Side. Many neighborhoods in these sections are vulnerable to such problems as frequent flooding, lead contamination in drinking water, inequities in safety and maintenance of green space, and less access to Lake Michigan, the city's primary natural resource and recreational amenity.

The WaterMarks project advances informal STEM learning in at least two ways. First, while the WaterMarks project is designed to fit Milwaukee, the project includes the development of an Adaptable Model Guide. The Guide is designed so that other cities can modify and employ its inclusive structure, programming, and process of collaboration among artists, scientists, partner organizations, and residents to promote citywide civic engagement in urban sustainability through the combination of informal STEM learning and public art. The Guide will be developed by a Community-University Working Group (CULab) hosted by UW-Milwaukee's Center for Community-Based Learning, Leadership, and Research and made up of diverse community and campus-wide stakeholders. In addition to overseeing the Guide’s creation, CULab will conceptualize onboarding and mentorship strategies for new participants as well as a framework for the program’s expansion and sustainability.

Second, through evaluation and research, the project will build a theoretical model for the relationships among science learning, engagement with the arts, and the distinctive contexts of different neighborhoods within an urban social-ecological system. The evaluation team, COSI’s Center for Research and Evaluation, and led by Co-PI Donnelly Hayde, aims to conduct formative, summative, and process evaluation of the Watermarks project, with the additional goal of producing evaluative research findings that can contribute to the broader field of informal learning. Evaluation foci include: How does the implementation of WaterMarks support positive outcomes for the project’s communities and the development of an adaptable model for city-scale informal science learning about urban environments? 2. To what extent do the type and degree of outcome-related change experienced by participating community residents vary across and/or between project sites? What factors, if any, appear to be linked to these changes? 3. To what extent and in what ways do the activities of the WaterMarks projects appear to have in situ effects related to the experience of place at project sites?

The project’s research team led by PI Ryan Holifield and Co-PI Woonsup Choi, will investigate how visual artistic activities introduced by the programming team as part of the Walks (and potentially other engagement activities) interact with personal, sociocultural, and physical contexts to produce distinctive experiences and outcomes of informal science learning about urban water systems. The aim of the research will be to synthesize the results from the different WaterMarks sites into an analysis generalizable beyond specific neighborhoods and applicable to other cities. The project's research questions include: 1. How does participation in Walks focused on visual artistic activities affect outcomes and experiences of informal STEM learning about urban water systems? 2. How do outcomes and experiences of informal STEM learning vary across different urban water topics, participants from different demographic groups, and contrasting sociocultural and biophysical contexts?

This Innovations in Development project is led by the University of Wisconsin-Milwaukee (UWM), in collaboration with City as Living Laboratory (CALL) and the COSI Center for Research and Evaluation.
DATE: -
resource project Media and Technology
Early childhood is a critical time for developing foundational knowledge, skills, and interest in science, technology, engineering, and mathematics (STEM). For that reason, the Public Broadcasting Service (PBS) places a great priority on developing early childhood STEM content, especially through its television shows that are watched by over 60% of young children in the United States. Research suggests that adding in-the-moment interaction to television watching promotes learning and engagement. Toward this end, researchers from the University of California, Irvine and PBS KIDS have prototyped interactive versions of science shows that children view on internet-connected devices while they communicate with the main character powered by an AI conversational agent. Pilot studies show that when children watch these new interactive videos with the main character pausing periodically to ask probing questions about the learning goals of the episode and following up with appropriate responses, they are more engaged and learn more about science, with heightened benefits for children who speak languages other than English at home. Based on these early results, in this Innovations in Development project the research team will develop, test and produce publicly available conversational episodes for two PBS KIDS television shows, one focused on science and the other on computational thinking.

The project will iteratively study and develop six conversational videos with novel forms of support for children, including extended back-and-forth conversation that builds upon a child's responses, visual scaffolding that facilitates verbal communication, and bilingual language processing so that children can answer in English or Spanish. The conversational videos will be evaluated in both lab-based and home settings. The lab-based study will involve 600 children ages 3-7 in a predominantly low-income Latino community in Southern California, in which researchers compare children’s learning and engagement when watching the conversational videos with three other formats: (1) watching the non-interactive broadcast version of the video; (2) watching the video with pseudo-interaction, in which the main character asks questions and gives a generic response after a fixed amount of time but can’t understand what the child says; or (3) watching the broadcast version of the video with a human co-viewer who pauses the video and asks questions. The home-based study will involve 80 families assigned to watch either the non-interactive or interactive videos as many times as they want over a month at home. In both the lab-based and home studies, pre- and post-tests will be used to examine the impact of video watching on science and language learning, and log data will be used to assess children’s verbalization and engagement while watching. Following the home study, the six videos will be further refined and made available for free to the public through the PBS KIDS apps and website, which are visited by more than 13 million users a month. Beyond providing engaging science learning opportunities to children throughout the country, this study will yield important insights into the design, usability, feasibility, and effectiveness of incorporating conversational agents into children’s STEM-oriented video content, with implications for extending this innovation to other educational media such as e-books, games, apps, and toys.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Mark Warschauer Silvia Lovato Andres Bustamante Abby Jenkins Ying Xu