Skip to main content

Community Repository Search Results

resource project Media and Technology
Over a three-year period, the Lawrence Hall of Science will conduct research on the conversations of groups and families encountering an Augmented Reality (AR) experience in a museum environment. The research program will identify which design elements best facilitate conversations among groups of visitors, and determine if these conversations are both rich in scientific content and gender-balanced. The project will focus on four specific activities: understanding the learning associated with current AR activities, implementing design-based research to develop visitor conversation supports, designing and developing new AR programs with embedded conversation supports, and conducting iterative hypothesis-based research on how learning conversations happen in AR learning environments. The museum community will gain insights on design principles for supporting collaborative learning using AR. Project staff will disseminate results via conference workshops for museum professionals on designing AR to enhance family learning, and through publication in professional journals.
DATE: -
TEAM MEMBERS: Mac Cannady
resource project Media and Technology
Hero Elementary is a transmedia educational initiative aimed at improving the school readiness and academic achievement in science and literacy of children grades K-2. With an emphasis on Latinx communities, English Language Learners, youth with disabilities, and children from low-income households, Hero Elementary celebrates kids and encourages them to make a difference in their own backyards and beyond by actively doing science and using their Superpowers of Science. The project embeds the expectations of K–2nd NGSS and CCSS-ELA standards into a series of activities, including interactive games, educational apps, non-fiction e-books, hands-on activities, and a digital science notebook. The activities are organized into playlists for educators and students to use in afterschool programs. Each playlist centers on a meaningful conceptual theme in K-2 science learning.
DATE: -
TEAM MEMBERS: Joan Freese Momoko Hayakawa Bryce Becker
resource project Media and Technology
This Smart and Connected Community (SCC) project will partner with two rural communities to develop STEMports, an innovative Science, Technology, Engineering and Mathematics (STEM) learning game for workforce development. The game's activities will take players on localized Augmented Reality (AR) missions to both engage in STEM learning challenges and discover emerging STEM careers in their community, specifically highlighting innovations in the fields of sustainable agriculture and aquaculture, forest products, and renewable energy. Community Advisory Teams (CATs) and co-design teams, including youth, representatives from the targeted emerging STEM economies, and decision-makers will partner with project staff to co-design STEMports that reflect the interests, cultural contexts, and envisioned STEM industries of the future for each community.

The project will: (a) design and pilot an AR game for community STEM workforce development; (b) develop and adapt a community engagement process that optimizes community networking for co-designing the gaming application and online community; and (c) advance a scalable process for wider applications of STEMports. This project is a collaboration between the Maine Mathematics and Science Alliance and the Field Day Lab at the University of Wisconsin-Madison to both build and research the co-designing of a SCC based within an AR environment. The project will contribute knowledge to the informal STEM learning, community development, and education technology fields in four major ways:


Deepening the understanding of how innovative technological tools support rural community STEM knowledge building as well as STEM identity and workforce interest.
Identifying design principles for co-designing the STEMports community related to the technological design process.
Developing social network approaches and analytics to better understand the social dimensions and community connections fostered by the STEMport community.
Understanding how participants' online and offline interactions with individuals and experiences builds networks and knowledge within a SCC.


With the scaling of use by an ever-growing community of players, STEMports will provide a new AR-based genre of public participation in STEM and collective decision making. The research findings will add to the emerging literature on community-wide education, innovative education technologies, informal STEM learning (especially place-based learning and STEM ecosystems), and participatory design research.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Scott Byrd Sue Allen Gary Lewis Ruth Kermish-Allen David Gagnon
resource project Media and Technology
Implementation of a permanent exhibition, on-line content, educational materials, and public programs exploring the history and cultural impact of video games.

Through the design, fabrication, and implementation of a 24,000-sq. ft. permanent, long-term gallery—tentatively entitled Digital Worlds—The Strong National Museum of Play will explore and share the history, influence, and experience of video games as they relate to culture, storytelling, human development, and the broader evolution of play. This gallery, the centerpiece of a transformational museum expansion, will include complementary and cohesive interactive exhibit spaces that showcase the history of video games through: (1) display of rare and unique historical artifacts; (2) use of multiple media formats that allow guests to discover the history of video games and their impact on society and culture; and (3) inclusion of one-of-a-kind interactive experiences that bring the history, art, and narrative structures of video games to life.
DATE: -
TEAM MEMBERS: Jon-Paul Dyson
resource project Media and Technology
Production of an immersive website exploring the history, culture, and archaeology of the Giza plateau.

The Giza Project at Harvard University plans to build the full-scale version of its forthcoming public website, Digital Giza. Using the tools of the future to study the past, this free online resource will integrate diverse primary documentation from over 100 years of international archaeological research in Egypt with a scientifically-informed 3D immersive computer model of the whole Giza Plateau, including the pyramids, temples, settlements, and surrounding cemeteries. Through various “digital archaeology experiences,” visitors to the site will engage with new forms of interpretation and story-telling based on Giza materials digitally embedded and clearly contextualized in their original spatial settings. The Giza Project’s ultimate deliverable will be a powerful new online education and research tool for the world community at all levels of expertise: an interactive website and virtual environment encouraging exploration into Egyptological, historical, and broader humanities themes.
DATE: -
TEAM MEMBERS: Peter Der Manuelian
resource project Exhibitions
The project will develop and research how an emerging technology, immersive virtual reality (IVR) using head mounted displays (HMDs), can enhance ocean literacy and generate empathy towards environmental issues. Recent advances in design have resulted in HMDs that provide viscerally realistic and immersive experiences that situate participants in underwater or other remote environments. IVR can provide many people with virtual access to these environments, including persons with disabilities, people living away from coastal areas, or those who lack access for other reasons (e.g., low-income families, underserved/underrepresented communities, persons untrained in diving). The project will develop a high quality 360-degree underwater film that includes live action footage, animation, and interactive elements. The IVR experience will take the participant through an immersive underwater journey of a Pacific reef, using realistic visualizations, narrative, and a compelling story to engage participants in learning the ecology and biology of coral reefs, as well as the impacts of climate change and human disturbances on ocean ecosystems. In addition to the IVR ocean journey, the project will integrate interactive functionality of being on a reef during mass coral spawning, an annual natural phenomenon through which coral reefs replenish their populations. With hand-held controllers, participants will be able to "swim" through the water, watch the degraded reef recover and grow and will have the ability to change the rate of coral recovery and learn how increases in temperature impede coral recovery. While research has been conducted on early, desk-top versions of IVR, the potential impact of IVR on learning is still unclear. The research findings will help guide the development of IVR for use in informal STEM environments such as aquariums, zoos, science museums, and others. The IVR experience will be shared on online platforms for home viewing, at film festivals and conferences, and in informal learning environments.

The project addresses the need for research on the impacts of IVR devices as it become more affordable and more widely used at home and in other informal and formal environments. Few studies have investigated how design elements impact the user in IVR, in which the increased immersion affects the stimuli perception and cognitive processing. The research will assess the learning affordances and impacts of the IVR experience on participant ocean literacy (adapting items from an existing ocean literacy survey), environmental empathy/feelings of presence (naturalistic observations and post-experience interviews), and perceived self-efficacy (pre-post survey, post-interview interviews). In addition, the project will research how segmentation (i.e., a continuous experience vs. an experience with breaks), generative learning tasks (hands-on experiences and interactive during IVR), and gender of the narrator in an IVR experience supports learning about ocean environments. Researchers will collect data from students attending high schools with predominantly minority student enrollments. Research findings will be widely shared through peer-reviewed publications, conference presentations, and publications for educators and designers.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Jeremy Bailenson Erika Woolsey
resource project Exhibitions
There is a dearth of prominent STEM role models for underrepresented populations. For example, according to a 2017 survey, only 3.1% of physicists in the United States are Black, only 2.1% are Hispanic, and only 0.5% are Native American. The project will help bridge these gaps by developing exhibits that include simulations of historical scientific experiments enacted by little-known scientists of color, virtual reality encounters that immerse participants in the scientists' discovery process, and other content that allows visitors to interact with the exhibits and explore the exhibits' themes. The project will develop transportable, interactive exhibits focusing on light: how we perceive light, sources of light from light bulbs to stars, uses of real and artificial light in human endeavors, and past and current STEM innovators whose work helps us understand, create, and harness light now. The exhibits will be developed in three stages, each exploring a characteristic of light (Color, Energy, or Time). Each theme will be explored via multiple deliveries: short documentary and animated films, virtual reality experiences, interactive "photobooths," and technology-based inquiry activities. The exhibit components will be copied at seven additional sites, which will host the exhibits for their audiences, and the project's digital assets will enable other STEM learning organizations to duplicate the exhibits. The exhibits will be designed to address common gaps in understanding, among adults as well as younger learners, about light. What light really is and does, in scientific terms, is one type of hidden story these exhibits will convey to general audiences. Two other types of science stories the exhibits will tell: how contemporary research related to light, particularly in astrophysics, is unveiling the hidden stories of our universe; and hidden stories of STEM innovators, past and present, women and men, from diverse backgrounds. These stories will provide needed role models for the adolescent learners, helping them learn complex STEM content while showing them how scientific research is conducted and the diverse community of people who can contribute to STEM innovations and discoveries.

The project deliverables will be designed to present complex physics content through coherent, immersive, and embodied learning experiences that have been demonstrated to promote engagement and deeper learning. The project will research whether participants, through interacting with these exhibits, can begin to integrate discrete ideas and make connections with complex scientific content that would be difficult without technology support. For example, students and other novices often lack the expertise necessary to make distinctions between what is needed and what is extra within scientific problems. The proposed study follows a Design-Based Research (DBR) approach characterized by iterative cycles of data collection, analysis, and reflection to inform the design of educational innovations and advance educational theory. Project research includes conceiving, building, and testing iterative phases, which will enable the project to capture the complexity of learning and engagement in informal learning settings. Research participants will complete a range of research activities, including focus group interviews, observation, and pre-post assessment of science content knowledge and dispositions.

By showcasing such role models and informing about related STEM content, this project will widen perspectives of audiences in informal learning settings, particularly adolescents from groups underrepresented in STEM fields. Research findings and methodologies will be shared widely in the informal STEM learning community, building the field's knowledge of effective ways to broaden participation in informal science learning, and thus increase broaden participation in and preparation for the STEM-based workforce.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Todd Boyette Jill Hamm Janice Anderson Crystal Harden
resource project Media and Technology
Robots and robotics excite and challenge youths and adults. Unfortunately, the cost of purchasing robots or building useful robots is prohibitive for many low resource individuals and groups. This project will relieve this expense and provide an opportunity for resource limited individuals to experience the thrilling aspects of robotics by building a computer game that simulates robotic action. This project uses co-robotics wherein the participating player programs an avatar to assist in a symbiotic manner to achieve the goals of the game and participant. The game will provide access to the ideas and concepts such as programing, computational thinking and role assumption. The overarching goals are (1) to engage low-resource learners in STEM education through robotics in out-of-school spaces, and (2) to update the field of robotics-base STEM education to integrate the co-robotics paradigm.

This project is designed to gain knowledge on how co-robotics can be used in the informal education sector to facilitate the integration of computational science with STEM topics and to expand the educational use of co-robotics. Because the concept of co-robotics is new, a designed-based research approach will be used to build theoretical knowledge and knowledge of effective interventions for helping participants learn programing and computational thinking. Data will be collected from several sources including surveys, self-reports, in game surveys, pre and post-tests. These data collection efforts will address the following areas: Technology reliability, Resolution of cognitive tension around co-play, Accelerate discovery and initial engagement, Foster role-taking and interdependence with co-robots, Investigate social learning, and Validate measures using item response theory analysis. The DBR study questions are:

1.What design principles support the development of P3Gs that can effectively attract initial engagement in a free-choice OST space that offers large numbers of competing options? 2.What design principles support a P3G gameplay loop that enables learning of complex skills, computational thinking and co-robotics norms, and building of individual and career interest over the course of repeated engagement?

3.What design principles support P3Gs in attaining a high rate of re-engagement within low-resource OST settings? 4.What kinds of positive impact can P3Gs have on their proximal and distal environment? In addition, the project will research these questions about design: 1.What technical and game design features are needed to accommodate technological interruption? 2.What design elements or principles mitigate competition for cognitive resources between real-time play and understanding the co-robotic's behavior in relation to the code the player wrote for it? 3.What design elements are effective at getting learners in OST settings to notice and start playing the game? 4.What designs are effective at encouraging learners to engage with challenging content, particularly the transition from manual play to co-play? 5.What design elements help players develop a stake in the role the game offers? 6.What social behaviors emerge organically around a P3G prototype that is not designed to evoke specific social interactions?

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Ross Higashi
resource project Media and Technology
This project tackles the urgent needs of the nation to engage people of all ages in computational thinking and help them learn basic computer science concepts with a unique and innovative approach of structured in-game computer program coding. Researchers will explore the design and development of a 3D puzzle-based game, called May's Journey, in which players solve an environmental maze by using the game's pseudo code to manipulate game objects. The game is designed to teach introductory but foundational concepts of computer programming including abstraction, modularity, reusability, and debugging by focusing players on logic and concepts while asking them to type simple instructions in a simplified programming language designed for novices. The game design in this project differs from today's block-based programming learning approaches that are often too far from actual computer code, and also differs from professional programming languages which are too complex for novices. The game and its embedded programming language learning are designed to be responsive to the progress of the learner throughout the game, transitioning from pseudo code to the embedded programming language itself. Error messages for debugging are also designed to be adaptive to players' behavior in the game. Using extensive log data collected from people playing the game, researchers can study how people learn computer programming. Such knowledge can advance understanding of the learning processes in computer programming education. Additionally, this work emphasizes the use of games as informal learning environments as they are accessible and fun, drawing attention and retention of many learners of different age groups with the potential to change attitudes towards computer programming across different populations. This project is co-funded by the STEM + Computing (STEM+C) program that supports research and development to understand the integration of computing and computational thinking in STEM learning, and the Advancing Informal STEM Learning (AISL) program that funds innovative research, approaches and resources for use in a variety of settings with its overall strategy to enhance learning in informal environments.

The project's formative and summative evaluation methods, including surveys, expert reviews of learners' computer code developed in the game, and interviews, are used to gauge learners' engagement as well as learning. In exploring learning, researchers aim to understand how players build implicit computer science knowledge through gameplay and how that gameplay relates to their performance on external transfer tasks. The project will answer the following three research questions: (1) Can observers reliably detect and label patterns of gameplay that provide evidence of learning or misconceptions regarding the four computer science constructs - abstraction, modularity, debugging and semantics - that learners exhibit playing May's Journey? (2) How does learner's implicit knowledge of these computer science constructs change over time and do those patterns vary by gender and prior programming experiences? (3) Is there a strong correlation between implicit learning measures and transfer of CS concepts: modularity, debugging, semantics, and abstraction? How do these correlations vary across elements of the game? This work will result in several outcomes: game design metaphors tested for their learning and engagement value that can be abstracted and embedded in different games. This project will also contribute patterns and an understanding of how people learn and engage in problem solving using concepts of abstraction, modularity, debugging and semantics. These outcomes will lead to advancement in knowledge in the learning sciences as well as the design of educational games that enrich STEM learning, particularly in programming and computational thinking. In addition, this project will engage female participants and underserved populations through partnering organizations including National Girls Collaborative project.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Magy Seif El-Nasr
resource project Exhibitions
As the world is increasingly dependent upon computing and computational processes associated with data analysis, it is essential to gain a better understanding of the visualization technologies that are used to make meaning of massive scientific data. It is also essential that the infrastructure, the very means by which technologies are developed for improving the public's engagement in science itself, be better understood. Thus, this AISL Innovations in Development project will address the critical need for the public to learn how to interpret and understand highly complex and visualized scientific data. The project will design, develop and study a new technology platform, xMacroscope, as a learning tool that will allow visitors at the Science Museum of Minnesota and the Center of Science and Industry, to create, view, understand, and interact with different data sets using diverse visualization types. The xMacroscope will support rapid research prototyping of public experiences at selected exhibits, such as collecting data on a runner's speed and height and the visualized representation of such data. The xMacroscope will provide research opportunities for exhibit designers, education researchers, and learning scientists to study diverse audiences at science centers in order to understand how learning about data through the xMacroscope tool may inform definitions of data literacy. The research will advance the state of the art in visualization technology, which will have broad implications for teaching and learning of scientific data in both informal and formal learning environments. The project will lead to better understanding by science centers on how to present data to the public more effectively through visualizations that are based upon massive amounts of data. Technology results and research findings will be disseminated broadly through professional publications and presentations at science, education, and technology conferences. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project is driven by the assumption that in the digital information age, being able to create and interpret data visualizations is an important literacy for the public. The research will seek to define, measure, and advance data visualization literacy. The project will engage the public in using the xMacrocope at the Science Museum of Minnesota and at the Center of Science and Industry's (COSI) science museum and research center in Columbus, Ohio. In both museum settings the public will interact with different datasets and diverse types of visualizations. Using the xMacroscope platform, personal attributes and capabilities will be measured and personalized data visualizations will be constructed. Existing theories of learning (constructivist and constructionist) will be extended to capture the learning and use of data visualization literacy. In addition, the project team will conduct a meta-review related to different types of literacy and will produce a definition with performance measures to assess data visualization literacy - currently broadly defined in the project as the ability to read, understand, and create data visualizations. The research has potential for significant impact in the field of science and technology education and education research on visual learning. It will further our understanding of the nature of data visualization literacy learning and define opportunities for visualizing data in ways that are both personally and culturally meaningful. The project expects to advance the understanding of the role of personalization in the learning process using iterative design-based research methodologies to advance both theory and practice in informal learning settings. An iterative design process will be applied for addressing the research questions by correlating visualizations to individual actions and contributions, exploring meaning-making studies of visualization construction, and testing the xMacroscope under various conditions of crowdedness and busyness in a museum context. The evaluation plan is based upon a logic model and the evaluation will iteratively inform the direction, process, and productivity of the project.
DATE: -
TEAM MEMBERS: Katy Borner Kylie Peppler Bryan Kennedy Stephen Uzzo Joe E Heimlich
resource project Media and Technology
Polar Extremes: Enhancing Experiential Digital Learning is an integrated media and research project produced by the PBS science series, NOVA, that will bring polar science to informal learners through traditional storytelling and experiential, digital learning environments. Stark, cold, and seemingly frozen in time, the top and bottom of the Earth feel other-worldly, completely removed from our everyday existence. Yet, nothing could be further from the truth. The Arctic and Antarctic exert profound influence over our entire planet. Disturbances in these icy realms can send transformative ripples around the globe, altering the circulation of the atmosphere and oceans, and affecting every form of life. And although the poles might seem constant and everlasting, they--like our planet--are always changing, with a deep and complex past. NOVA will provide informal science learners access to specialized research happening at the ends of the earth, introducing them to today's scientists exploring the major drivers of the climate, uncovering the deep history of past paleoclimates, or perfecting climate and weather models. The project includes: a 2-hour nationally broadcast PBS documentary (working title Polar Extremes); a NOVA Polar Lab, an experiential interactive learning platform on polar science; and a Polar Exploration Initiative consisting of a 10-part YouTube series, a collection of 360 videos, virtual field trips, and social media reporting "on location" from Antarctica, along with other polar-themed video, radio and digital journalism. It also includes a research program conducted in collaboration with the University of California, Santa Barbara (UCSB) to study how narrative-driven and experiential learning can foster informal learning in polar science across a diverse array of audiences. NOVA, the most popular science program on television, with a robust digital presence, will bring current polar science to millions. NOVA will use a range of media to transport viewers to remote polar locations, to interact with polar scientists, manipulate polar data, or vicariously explore the frozen tundra--using a mix of learning approaches. This project will develop and test the impact of two forms of informal learning: traditional narrative-driven storytelling and active, experiential learning. Both components will be developed through audience research, formative evaluation or pilot testing, and experiments. The overarching goal is to determine the best way to combine and leverage traditional and interactive media technologies to educate the public about polar science. How can these modes enhance learning outcomes? The study uses the Informal Science Learning "strand framework" developed by the National Research Council in Learning Science in Informal Environments: People, Places, and Pursuits (2009). Because different age groups and socioeconomic backgrounds may engage differently with different types of learning materials and platforms, the project components are designed to test a variety of different learning approaches, with different audiences. This study will be one of the first to address the relative efficacy of various forms of experiential education and whether active versus vicarious experiential learning depends on the characteristics of the learners. As engagement technologies continue to evolve, this project will help inform how to best design and apply them effectively. The project will apply these new lessons specifically to present polar research to the public and to offer audiences an opportunity to explore and learn about these remote regions in new ways that bring them to life, make them relevant, and enhance learning outcomes. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project has co-funding support from the Office of Polar Programs (OPP).
DATE: -
TEAM MEMBERS: Paula Apsell Lisa Leombruni Julia Cort Hunter Gehlbach
resource project Media and Technology
Women continue to be underrepresented in computer science professions. In 2015, while 57% of professional occupations in the U.S. were held by women, only 25% of computing occupations were held by women. Furthermore, the share of computer science degrees going to women is smaller than any STEM field, even though technology careers are the most promising in terms of salaries and future growth. Research suggests that issues contributing to this lack of computer science participation begin early and involve complex social and environmental factors, including girls' perception that they do not belong in computer science classes or careers. Computer science instruction often alienates girls with irrelevant curriculum; non-collaborative pedagogies; a lack of opportunities to take risks or make mistakes; and a heavy reliance on lecture instead of hands-on, project-based learning. Computer science experiences that employ research-based gender equitable best practices, particularly role modeling, can help diminish the gender gap in participation. In response to this challenge, Twin Cities PBS (TPT), the National Girls Collaborative (NGC) and Code.org will lead Code: SciGirls! Media for Engaging Girls in Computing Pathways, a three-year project designed to engage 8-13 year-old girls in coding through transmedia programming which inspires and prepares them for future computer science studies and career paths. The project includes five new PBS SciGirls episodes featuring girls and female coding professionals using coding to solve real problems; a new interactive PBSKids.org game that allows children to develop coding skills; nationwide outreach programming, including professional development for informal educators and female coding professionals to facilitate activities for girls and families in diverse STEM learning environments; a research study that will advance understanding of how the transmedia components build girls' motivation to pursue additional coding experiences; and a third-party summative evaluation.

Code: SciGirls! will foster greater awareness of and engagement in computer science studies and career paths for girls. The PBS SciGirls episodes will feature girls and female computer science professionals using coding to solve real-world challenges. The project's transmedia component will leverage the television content into the online space in which much of 21st century learning takes place. The new interactive PBSKids.org game will use a narrative framework to help children develop coding skills. Drawing on narrative transportation theory and character identification theory, TPT will commission two exploratory knowledge-building studies to investigate: To what extent and how do the narrative formats of the Code: SciGirls! online media affect girls' interest, beliefs, and behavioral intent towards coding and code-related careers? The studies aim to advance understanding of how media builds girls' motivation to pursue computer science experiences, a skill set critical to building tomorrow's workforce. The project team will also raise educators' awareness about the importance of gender equitable computer science instruction, and empower them with best practices to welcome, prepare and retain girls in coding. The Code: SciGirls! Activity Guide will provide educators with a relevant resource for engaging aspiring computer scientists. The new media and guide will also reside on PBSLearningMedia.org, reaching 1.2 million teachers, and will be shared with thousands of educators across the SciGirls CONNECT and National Girls Collaborative networks. The new episodes are anticipated to reach 92% of U.S. TV households via PBS, and the game at PBSKids.org will introduce millions of children to coding. The summative evaluation will examine the reach and impact of the episodes, game and new activities. PIs will share research findings and project resources at national conferences and will submit to relevant publications. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Rita Karl Karen Peterson Rebecca Osborne Barbara Flagg