Co-robotic Games for Low Resource Learners

Date: 
Thursday, August 1, 2019 to Monday, July 31, 2023
Resource Type:
Project Descriptions | Projects
Environment Type: 
Media and Technology, Games, Simulations, and Interactives
Audience: 
Elementary School Children (6-10) | Middle School Children (11-13) | Youth/Teen (up to 17) | Educators/Teachers | Museum/ISE Professionals | Evaluators | Learning Researchers
Discipline: 
Computing and information science | Education and learning science
Access and Inclusion: 
Low Socioeconomic Status
Organization:
Carnegie-Mellon University
Description: 

Robots and robotics excite and challenge youths and adults. Unfortunately, the cost of purchasing robots or building useful robots is prohibitive for many low resource individuals and groups. This project will relieve this expense and provide an opportunity for resource limited individuals to experience the thrilling aspects of robotics by building a computer game that simulates robotic action. This project uses co-robotics wherein the participating player programs an avatar to assist in a symbiotic manner to achieve the goals of the game and participant. The game will provide access to the ideas and concepts such as programing, computational thinking and role assumption. The overarching goals are (1) to engage low-resource learners in STEM education through robotics in out-of-school spaces, and (2) to update the field of robotics-base STEM education to integrate the co-robotics paradigm.

This project is designed to gain knowledge on how co-robotics can be used in the informal education sector to facilitate the integration of computational science with STEM topics and to expand the educational use of co-robotics. Because the concept of co-robotics is new, a designed-based research approach will be used to build theoretical knowledge and knowledge of effective interventions for helping participants learn programing and computational thinking. Data will be collected from several sources including surveys, self-reports, in game surveys, pre and post-tests. These data collection efforts will address the following areas: Technology reliability, Resolution of cognitive tension around co-play, Accelerate discovery and initial engagement, Foster role-taking and interdependence with co-robots, Investigate social learning, and Validate measures using item response theory analysis. The DBR study questions are:

1.What design principles support the development of P3Gs that can effectively attract initial engagement in a free-choice OST space that offers large numbers of competing options? 2.What design principles support a P3G gameplay loop that enables learning of complex skills, computational thinking and co-robotics norms, and building of individual and career interest over the course of repeated engagement?

3.What design principles support P3Gs in attaining a high rate of re-engagement within low-resource OST settings? 4.What kinds of positive impact can P3Gs have on their proximal and distal environment? In addition, the project will research these questions about design: 1.What technical and game design features are needed to accommodate technological interruption? 2.What design elements or principles mitigate competition for cognitive resources between real-time play and understanding the co-robotic's behavior in relation to the code the player wrote for it? 3.What design elements are effective at getting learners in OST settings to notice and start playing the game? 4.What designs are effective at encouraging learners to engage with challenging content, particularly the transition from manual play to co-play? 5.What design elements help players develop a stake in the role the game offers? 6.What social behaviors emerge organically around a P3G prototype that is not designed to evoke specific social interactions?

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.

Funder(s): 
NSF
Funding Program: 
Advancing Informal STEM Learning (AISL)
Award Number: 
1906753
Funding Amount: 
$1,799,992

Team Members

Ross HigashiRoss HigashiPrincipal Investigator

Request to Edit a Resource

If you would like to edit a resource, please use this form to submit your request.