Skip to main content

Community Repository Search Results

resource project Exhibitions
Cultivating Confidence: Young Women's Self-Efficacy in Science Museums is an NLG Diversity and Inclusion research project that studies the impact of a single science museum visit on "emerging adult" learners (young adults aged 18-29, not yet married, no children). Cultivating Confidence builds directly on prior IMLS-funded research that found that a science museum visit mitigated a pre-existing gender gap in science self-efficacy: Young women entered the museum with significantly lower science self-efficacy (confidence to do or learn science) than men, experienced a significant increase over the course of the visit, and remained at that same level, equal to men's, three months after the visit. Cultivating Confidence will replicate and investigate this effect further by observing male and female young adults during their visit and over the course of the following three months. The study will attempt to understand how museum visits help young women build crucially important science self-confidence. What happens during the visit and how does that affect young women's subsequent behavior and beliefs? The study will also attempt to untangle the confound between gender and initial science self-efficacy (SSE), since the women in the prior study tended to have lower pre-visit SSE than men.
DATE: -
resource project Professional Development, Conferences, and Networks
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The theme of this conference project by the New York Hall of Science will be exploring how to better design exhibits to promote "public engagement with science." Here, "public engagement with science" refers to opportunities that go beyond traditional approaches to the public understanding of science. The event will invite professionals to consider how to shift exhibit designs toward engaging visitors with STEM in ways that emphasize the intersection of STEM innovation with visitors' daily lives, their personal agency, and their interdependence with their personal social networks and the institutions that advance STEM knowledge and innovation. The conference and its pre- and post-conference activities will bring together curators, exhibition developers, community outreach professionals, museum administrators, and learning scientists from the United States and Canada. They will work together to identify design principles and key obstacles to designing exhibits that can better help science museums achieve two goals: 1) making visitors' diverse and personal questions, concerns, and perspectives central to their experience of the exhibits; and 2) engaging visitors as contributors to the exhibit experience in ways that make their contributions visible and consequential. During this two-day event attendees will consider how exhibits can support broader and more diverse public participation in critical debates about the roles of STEM discovery and innovation in society. The effort is grounded in recent work on public engagement with science; on reorganizing museums to become sites for participation and contribution by visitors, and particularly by institutions' local communities; and on making and engineering design programming within museums. The goal is to chart a course toward a vision of the future of science museums in which they maintain their status as sources of trusted information, while also fulfilling their potential as sites of genuine participation and social interaction, in which visitors make meaningful contributions to the substance and workings of the museum floor while also engaging with, learning about and holding themselves accountable to the core concepts and practices of the STEM disciplines. The conference will build the capacity and collaborative engagement of a network of science centers whose work is central to achieving the museum field's ultimate goal of engaging the public of all ages in learning STEM in informal environments. The conference and associated activities will be evaluated by staff at the New York Hall of Science, with oversight by an external advisory committee of research and development professionals. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Exploratorium in San Francisco, in collaboration with social science researchers at Arizona State University and Rutgers University, will conduct a two-year Pilots and Feasibility Studies project that will test a new model for integrating museum exhibits with public participation in scientific research, called Exhibit-Based PPSR (E-PPSR). The team will create a mini-exhibition about social psychology that (a) engages science museum visitors in investigating and reflecting on social factors that promote cooperation or not, (b) builds public awareness of the science of social psychology and (c) generates valid data for academic research in this area.

The Exploratorium will build on its long history of creating participatory exhibits that engage visiting groups in social science learning and in self-reflective metacognition. This expands beyond the typical lab-in-the-museum in which individual visitors interact with researchers' laptops or simple props. The model takes the exhibit experiences further, injecting the dimension of public participation in social psychology research. By voluntarily and anonymously contributing demographic and response data, large numbers of people from mixed-age groups will help social scientists gain new insights into cooperation among a broader sample of humanity than are usually studied in university labs. The E-PPSR lab is always available, rather than open only when a researcher is present. The model also incorporates research on learning and assesses the effect of E-PPSR on social science learning experiences. Do museum visitors build greater conceptual understanding of the social science by contributing to real research and seeing their own responses within the larger dataset? Do they attend more deeply to debriefing activities when they have contributed their own data? The three main deliverables include: 1) a prototype Exhibit-based PPSR laboratory at the Exploratorium comprised of one exhibit for gaining informed consent, three 'Data-Catcher' exhibits modified to record anonymous responses when visitors opt-in to contributing to social psychological research, and one debriefing exhibit. A back-end database will send data to the academic researchers; 2) evaluation studies that test the E-PPSR model. The studies will assess the success of debriefing approaches, the effectiveness of recruitment and the impact of E-PPSR on learning. The team will publish a journal article describing the E-PPSR model and academic research findings. The team will also organize a conference session with others in the museum field who manage in-house academic research laboratories; and 3) a report by the academic partners describing the impact of the project on their research program.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Josh Gutwill Heike Winterheld
resource project Exhibitions
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The Designing Our Tomorrow project will develop a framework for creating exhibit-based engineering design challenges and expand an existing model of facilitation for use in engineering exhibits. The project seeks to broaden participation in engineering and build capacity within the informal science education (ISE) field while raising public awareness of the importance of sustainable engineering design practices. The project focuses on girls aged 9-14 and their families and is co-developed with culturally responsive strategies to ensure the inclusion and influence of families from Latino communities. The project will conduct research resulting in theory-based measures of engineering proficiencies within an exhibit context and an exhibit facilitation model for the topic area of engineering. Based on the research, the project will develop an engineering design challenge framework for developing design challenges within an exhibit context. As the context for research, the project will develop a bilingual English/Spanish 2,000-square foot traveling exhibition designed to engage youth and families in engineering design challenges that advance their engineering proficiencies from beginner to more informed, supported by professional development modules and a host-site training workshop introducing strategies for facilitating family engineering experiences within a traveling exhibition. The project is a collaboration of Oregon Museum of Science and Industry with the Biomimicry Institute, Adelante Mujeres, and the Fleet Science Center.

Designing Our Tomorrow builds on a theory-based engineering teaching framework and several previous NSF-funded informal education projects to engage families in compelling design challenges presented through the lens of sustainable design exemplified by biomimicry. Through culturally-responsive co-development and research strategies to include members of Latino communities and provide challenges that highlight the altruistic, creative, personally relevant, and collaborative aspects of engineering, the Designing Our Tomorrow exhibition showcases engineering as an appealing career option for women and helps families support each other's engineering proficiencies. To better understand and promote engineering learning in an ISE setting, the project will conduct two research studies to inform and iteratively develop effective strategies. In the first study, measurement development will build on prior research and practice to design credible and reliable measures of engineering proficiency, awareness, and collaboration, as well as protocols for use in exhibit development and the study of facilitation at engineering exhibits, and future research. The second study will explore the effects of facilitation on the experience outcomes.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Marcie Benne Verónika Núñez
resource project Exhibitions
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This Research in Service to Practice project will study how visual immersion and interactivity in augmented reality (AR) affects visitors' engagement and understanding of science. The research involves creating different versions of an AR exhibit to communicate paleontology research from the La Brea Tar Pits to the general public. Different versions of the exhibit will be compared to learn how design choices for immersion and interactivity impact visitors' engagement and understanding of science. The result of this study should be a model to follow for similar public exhibits, as well as design principles that generalize to AR experiences for a broader range of informal learning environments. This project will also demonstrate and report on specific AR mechanisms that help visitors understand the scientific process and increase knowledge about paleontology research.

The study includes a user-centered design and evaluation process with both formative and comparative studies. This project investigates two high-level design factors for mobile AR: visual immersion and interactivity. These impact the learning experience and the development so extensively that multiple versions are seldom compared. These factors also have unique considerations for informal settings, such as how to balance immersion against situational awareness (e.g., 3D viewers reduce field of view). One goal of this project is to systematically compare qualitatively different AR designs that convey equivalent science content and study these tradeoffs empirically. The second goal is to leverage these findings to publicly release an AR experience that promotes engagement, increases understanding of science, and reduces scientific misconceptions. This research will also contribute to understanding usability and logistical issues for different AR designs for public, outdoor, informal settings.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Emily Lindsey Benjamin Nye Gale Sinatra William Swartout
resource project Public Programs
This project explores augmented reality (AR) technology as a way to make STEM content accessible to Deaf and Hard-of-Hearing (DHH) learners in "live" presentation settings found within science centers and museums. The current ways of providing communication and information access to DHH museum visitors require DHH learners to split their attention between the visual focus of the experience and the interpreter or captioning display. As a result, DHH learners are forced to decide which information to miss during live presentations, thus presentations may not be fully comprehended by the DHH learner. Furthermore, this issue perpetuates a lack of inclusivity and accessibility in informal STEM learning environments. The work focuses on investigating approaches to develop an AR platform with a near-eye display that will allow DHH visitors to receive signed or captioned instruction while still looking at and interacting with the intended exhibits. The new platform will allow for transmission of live and spontaneous instruction. Researchers will evaluate and recommend efficient ways to make information at science centers and museums accessible to the DHH population based on data collected from DHH learners. This project is funded by the Advancing Informal STEM Learning program's Pilot and Feasibility Studies which seek new approaches to design and development of STEM learning to be accessible to all learners including underrepresented groups in informal environments.

The researchers will investigate the following research question: how can the use of Augmented Reality (AR) as a method of support service delivery improve the engagement of Deaf and Hard-of-Hearing (DHH) adolescent learners in semi-structured learning environments? Both formative and summative evaluations will be conducted from two different angles: (1) an engineering-centric evaluation focused on technical development and (2) an educational-research centric evaluation focused on pilot studies on user experiences, attitudes, and learning outcomes. Both qualitative and quantitative data on the use of this technology will be collected. The evaluation methods include attitudinal surveys (pre/post), ethnographic observations, pre/post tests of content knowledge, and semi-structured group and individual interviews. This project will be conducted by researchers in the Center on Access Technology at National Technical Institute for the Deaf, one of the colleges of Rochester Institute of Technology, in partnership with the Rochester Museum & Science Center, which includes the Rochester Challenger Learning Center. This project represents a first step in setting future directions for research & development and to make educational materials more accessible to the DHH community.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Wendy Dannels Sara Schley Brian Trager Mel Chua
resource project Exhibitions
The Antarctic Dinosaurs project aims to leverage the popularity and charisma of dinosaurs to inspire a new generation of polar scientists and a more STEM (Science, Technology, Engineering, Mathematics)-literate citizenry. The project, centered on a giant screen film that will reach millions of theatrical viewers across the U.S., will convey polar science knowledge through appealing, entertaining media experiences and informal learning programs. Taking advantage of the scope of research currently taking place in Antarctica, this project will incorporate new perspectives into a story featuring dinosaurs and journey beyond the bones to reveal a more nuanced, multi-disciplinary interpretation of paleontology and the profound changes the Antarctic continent has endured. The goals of the project are to encourage young people to learn about Antarctica and its connection to the rest of the globe; to challenge stereotypes of what it means to participate in science; to build interest in STEM pursuits; and to enhance STEM identity.

This initiative, aimed particularly at middle school age youth (ages 11-14), will develop a giant screen film in 2D and 3D formats; a 3-episode television series; an "educational toolkit" of flexible, multi-media resources and experiences for informal use; a "Field Camp" Antarctic science intervention for middle school students (including girls and minorities); fictional content and presentations by author G. Neri dealing with Antarctic science produced for young people of color (including non-readers and at-risk youth who typically lack access to science and nature); and presentations by scientists featured in the film. The film will be produced as a companion experience for the synonymous Antarctic Dinosaurs museum exhibition (developed by the Field Museum, Chicago, in partnership with the Natural History Museum of Los Angeles County, Discovery Place, Charlotte, NC, and the Natural History Museum of Utah). Project partner The Franklin Institute will undertake a knowledge-building study to examine the learning outcomes resulting from exposure to the film with and without additional experiences provided by the Antarctic Dinosaurs exhibition and film-related educational outreach. The study will assess the strategies employed by practitioners to make connections between film and other exhibits, programs, and resources to improve understanding of the ways film content may complement and inspire learning within the framework of the science center ecosystem. The project's summative evaluation will address the process of collaboration and the learning impacts of the film and outreach, and provide best practices and new models for content producers and STEM educators. Project partners include film producers Giant Screen Films and Dave Clark Inc.; television producer Natural History New Zealand (NHNZ); Discovery Place (Charlotte, NC); The Franklin Institute; The Field Museum; The Natural History Museum of Utah (The University of Utah); author G. Neri; and a team of scientists and diversity advisers. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project has co-funding support from the Antarctic section of the Office of Polar Programs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Deborah Raksany Karen Elinich Andrew Wood
resource project Exhibitions
With snow providing water for about 2 billion people worldwide and playing a major role in the Earth's climate through its high albedo and insulation properties, on-going alterations in global snow resources pose real and extremely expensive societal adaptation/mitigation problems. The project goals are to:


Create opportunities for the public to learn about the vital role that snow plays in climate, water resources, and human lives.
Produce a better understanding of how culture affects informal Science, Technology, Engineering, Mathematics (STEM) learning.


The deliverables include:


An outreach program in Alaska that will visit 33 remote native villages;
A 2,000 square foot traveling exhibition on snow produced by the Oregon Museum of Science and Industry (OMSI) and exhibited at two additional museums during the life of the award;
Learning research, which will examine how the wide variation of cultural relationships to snow impacts learning in museum exhibitions. Each of these components will be evaluated over the course of the project. The travelling exhibition will tour to three museums per year for eight years, with an anticipated cumulative audience of over one million.


The focus on snow will highlight a fascinating yet under-appreciated part of the Earth system. The project aims to educate the public about snow and to produce a more informed and thoughtful public in the face of potential expensive and difficult snow-related societal decisions. Through informative displays, graphics, models, and other material, the project will engage traditionally under-served communities (at Native/remote villages) in Alaska, where a strong cultural connection to snow exists, as well as communities across the U.S. where the connection to snow can range from strong to weak. Across this cultural gradient, the project will explore through oral interviews and surveys the public response to various types and designs of informal science learning (ISL) displays, attempting to isolate and control for the effect of cultural vs. individual response to the materials. Informal learning theory specifies using front-end exploration of individual visitor-content relationships to guide exhibit design. This project's research goal expands that approach to include the effects of cultural engagement with a topic to develop more general tools to guide and improve the design process. The project is led by the University of Alaska Fairbanks (UAF) in collaboration with OMSI researchers from the COSI (Center of Science and Industry), Center for Research and Evaluation (CRE), and evaluators at the Goldstream Group. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project has co-funding support from the Office of Polar Programs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Victoria Coats Matthew Sturm Deborah Wasserman
resource project Exhibitions
Engagement is the cornerstone of learning in informal science education. During free-choice learning in museums and science centers, visitor engagement shapes how learners interact with exhibits, navigate through exhibit spaces, and form attitudes, interests, and understanding of science. Recent advances in multimodal learning analytics are creating novel opportunities for expanding the range and richness of measures of visitor engagement in free-choice settings. In particular, multimodal learning analytics offer significant potential for integrating multiple data sources to devise a composite picture of visitors' cognitive, affective, and behavioral engagement. The project will center on providing a rich empirical account of meaningful visitor engagement with interactive tabletop science exhibits among individual visitors and small groups, as well as uncovering broader tidal patterns in visitor engagement that unfold across exhibit spaces. A key objective of the project is creating models and practitioner-focused learning analytic tools that will inform the best practices of exhibit designers and museum educators. This project is funded by the Advancing Informal STEM Learning (AISL) program. As part of its overall strategy to enhance learning in informal environments, AISL funds research and innovative approaches and resources for use in a variety of settings. The research team will conduct data-rich investigations of visitors' learning experiences with multimodal learning analytics that fuse the rich multichannel data streams produced by fully-instrumented exhibit spaces with the data-driven modeling functionalities afforded by recent advances in machine learning and educational data mining. The research team will conduct a series of visitor studies of naturalistic engagement in solo, dyad, and group interactions as visitors explore interactive tabletop science exhibits. The studies will utilize eye trackers to capture visitors' moment-to-moment attention, facial expression analysis and quantitative field observations to track visitors' emotional states, trace logs generated by exhibit software, as well as motion-tracking sensors and coded video recordings to capture visitors' behavioral interactions. The studies will also use conversation recordings and pre-post assessment measures to capture visitors' science understanding and inquiry processes. With these multimodal data streams as training data, the research team will use probabilistic and neural machine learning techniques to devise learning analytic models of visitor engagement. The project will be conducted by a partnership between North Carolina State University and the North Carolina Museum of Natural Sciences. The research team will 1) design a data-rich multimodal visitor study methodology, 2) create the Visitor Informatics Platform, a suite of open source software tools for multimodal visitor analytics, and 3) launch the Multimodal Visitor Data Warehouse, a curated visitor experience data archive. Together, the multimodal visitor study methodology, the Visitor Informatics Platform, and the Multimodal Visitor Data Warehouse will enable researchers and practitioners in the informal science education community to utilize multimodal learning analytics in their own informal learning environments. It is anticipated that the project will advance the field of informal STEM learning by extending and enriching measures of meaningful visitor engagement, expanding the evidence base for visitor experience design principles, and providing learning analytic tools to support museum educators. By enhancing understanding of the cognitive, affective, and behavioral dynamics underlying visitor experiences in science museums, informal science educators will be well-positioned to design learning experiences that are more effective and engaging. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: James Lester James Minogue Jonathan Rowe North Carolina Museum of Natural Sciences
resource project Media and Technology
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.

In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).

Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
DATE: -
resource project Public Programs
One way to encourage youth to pursue training in the STEM fields and enter the STEM workforce is to foster interest and engagement in STEM during adolescence. Informal STEM Learning Sites (ISLS) provide opportunities for building interest and engagement in the STEM fields through a multitude of avenues, including the programming that they provide for youth, particularly teens. Frequently, ISLS provide opportunities to participate in volunteer programs, internships or work, which allow teens both to learn relevant STEM knowledge as well as to share that knowledge with others through opportunities to serve as youth educators. While youth educator programs provide rich contexts for teens to engage as both learners and teachers in these informal STEM environments, research to date has not yet identified the relationship between serving as youth educators and STEM engagement. Thus, the goal of this project is to document the impact of youth educators on visitor learning in ISLS and to identify best practices for implementing youth educator programs. The project studies STEM interests and engagement in the youth participants and the visitors that they interact with at six different ISLS in the US and UK. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.

This project examines youth educator experiences related to STEM identity, educational aspirations, and motivation. The project also identifies outcomes that the youth educators have on visitors to ISLS in terms of knowledge, interest, and engagement in STEM. The specific aims are: 1) Outcomes for Teens - To measure the longitudinal impact of participation in an extended youth educator experience in an ISLS; 2) Outcomes for Visitors - To compare visitor engagement with and learning from exhibits in ISLS when they interact with a youth educator, relative to outcomes of interacting with an adult educator or no educator; and 3) Outcomes Across Demographics and STEM Sites - To examine differences in visitor engagement based on participant characteristics such as socio-economic status (SES), age, gender, and ethnicity and to compare outcomes of youth educator experiences across different types of ISLS. This research, which draws on expectancy value theory and social cognitive theory, will follow youth participants longitudinally over the course of 5 years and use latent variable analyses to understand the impact on the youth educators as well as the visitors with whom they interact. Importantly, the results of this research will be used to develop best practices for implementing youth educator programs in ISLS and the results will be disseminated to both academic and practice-based communities.

This project has clear and measurable broader impacts in a variety of ways. First, the project provides guidance to improve programming for youth in ISLS, including both the sites involved directly in the research and to the larger community of ISLS through evaluation, development, and dissemination of best practices. Additionally, this project provides rigorous, research-based evidence to identify and describe the outcomes of youth educator programs. This study directly benefits the participants of the research, both the visiting public and the youth educators, through opportunities to engage with science. The findings speak to issues of access and inclusivity in ISLS, providing insight into how to design environments that are welcoming and accessible for diverse groups of learners. Finally, this project provides evidence for best practices for ISLS in developing programs for youth that will lead to interest in and pursuit of STEM careers by members of underrepresented groups.
DATE: -
TEAM MEMBERS: Adam Hartstone-Rose Matthew Irvin Kelly Lynn Mulvey Elizabeth Clemens Lauren Shenfeld
resource project Exhibitions
As the world is increasingly dependent upon computing and computational processes associated with data analysis, it is essential to gain a better understanding of the visualization technologies that are used to make meaning of massive scientific data. It is also essential that the infrastructure, the very means by which technologies are developed for improving the public's engagement in science itself, be better understood. Thus, this AISL Innovations in Development project will address the critical need for the public to learn how to interpret and understand highly complex and visualized scientific data. The project will design, develop and study a new technology platform, xMacroscope, as a learning tool that will allow visitors at the Science Museum of Minnesota and the Center of Science and Industry, to create, view, understand, and interact with different data sets using diverse visualization types. The xMacroscope will support rapid research prototyping of public experiences at selected exhibits, such as collecting data on a runner's speed and height and the visualized representation of such data. The xMacroscope will provide research opportunities for exhibit designers, education researchers, and learning scientists to study diverse audiences at science centers in order to understand how learning about data through the xMacroscope tool may inform definitions of data literacy. The research will advance the state of the art in visualization technology, which will have broad implications for teaching and learning of scientific data in both informal and formal learning environments. The project will lead to better understanding by science centers on how to present data to the public more effectively through visualizations that are based upon massive amounts of data. Technology results and research findings will be disseminated broadly through professional publications and presentations at science, education, and technology conferences. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project is driven by the assumption that in the digital information age, being able to create and interpret data visualizations is an important literacy for the public. The research will seek to define, measure, and advance data visualization literacy. The project will engage the public in using the xMacrocope at the Science Museum of Minnesota and at the Center of Science and Industry's (COSI) science museum and research center in Columbus, Ohio. In both museum settings the public will interact with different datasets and diverse types of visualizations. Using the xMacroscope platform, personal attributes and capabilities will be measured and personalized data visualizations will be constructed. Existing theories of learning (constructivist and constructionist) will be extended to capture the learning and use of data visualization literacy. In addition, the project team will conduct a meta-review related to different types of literacy and will produce a definition with performance measures to assess data visualization literacy - currently broadly defined in the project as the ability to read, understand, and create data visualizations. The research has potential for significant impact in the field of science and technology education and education research on visual learning. It will further our understanding of the nature of data visualization literacy learning and define opportunities for visualizing data in ways that are both personally and culturally meaningful. The project expects to advance the understanding of the role of personalization in the learning process using iterative design-based research methodologies to advance both theory and practice in informal learning settings. An iterative design process will be applied for addressing the research questions by correlating visualizations to individual actions and contributions, exploring meaning-making studies of visualization construction, and testing the xMacroscope under various conditions of crowdedness and busyness in a museum context. The evaluation plan is based upon a logic model and the evaluation will iteratively inform the direction, process, and productivity of the project.
DATE: -
TEAM MEMBERS: Katy Borner Kylie Peppler Bryan Kennedy Stephen Uzzo Joe E Heimlich