Skip to main content

Community Repository Search Results

resource project Public Programs
The Joseph Moore Museum at Earlham College will revise its interpreter training and educational programs to reflect current best practices in participatory STEM education. This project will include strengthening their programs to better prepare undergraduate educators, as well as updating the delivery of their top three requested programs to ensure learner-centered experiences. The project will include the development of a training program modeled on a combination of principles set out by the National Association of Interpretation and the Reflections on Practice program. Undergraduate educators will undergo systematic training in the fundamentals of educational theory and practice and benefit from a program of sustained evaluation and mentorship.
DATE: -
TEAM MEMBERS: Heather Lerner
resource research Professional Development, Conferences, and Networks
As science communication programs grow worldwide, effective evaluation and assessment metrics lag. While there is no consensus on evaluation protocols specifically for science communication training, there is agreement on elements of effective training: listening, empathy, and knowing your audience — core tenets of improvisation. We designed an evaluation protocol, tested over three years, based on validated and newly developed scales for an improvisation-based communication training at the Alan Alda Center for Communicating Science. Initial results suggest that ‘knowing your audience’ should
DATE:
TEAM MEMBERS: Christine O’Connell Merryn McKinnon Jordan Labouff
resource project Public Programs
The U.S. Fish and Wildlife Service estimates that over 41 million people connect to nature through birding. Learning about birds in their natural environments offers opportunities for informal engagement in STEM by a broad range of individuals and groups. Birders often engage in scientific data gathering and analyses, geolocation and remote sensing, and phenology. They also become aware of ecological changes in bird habitats and migratory patterns due to rising temperatures and climate-related events like sea level rise, droughts, fires, and extreme weather. As such, the birding community is an ideal network to better understand and communicate the impacts of climatological changes on bird populations to the public. With this Innovations in Development project, the National Audubon Society will develop a new avian-focused, conservation and climate science community science curriculum for its Nature Centers, and test the effectiveness of the curriculum in educating the public about avian-focused conservation and climatological changes through guided nature experiences. Birding can serve as a pivotal entrée for young people into STEM fields and careers. Through its programs and partnerships, Audubon will leverage its national network to ensure that through this project a more diverse group of voices, particularly young adults and young adults of color, become involved in asking critical questions and developing solutions to address important environmental issues of the future. If successful, the broader impacts of this project on capacity building and public engagement could be far-reaching and long-lasting.

Over the three-year project duration, Audubon will bring educators from its nationwide network of thirty-four Nature Centers (including urban, suburban, and rural sites), together with over 510 young adults (ages 18-25) from its network of college campus chapters. An evidence-based curriculum and community science activities will be created and tested, relying heavily on a team of experts in ornithology, climate science research, STEM curriculum design, diversity, and informal science education. College students will advise on the design of content and activities to effectively interest and engage young adults. These students will be recruited from the new Audubon Campus Chapters Program, which includes 111 college and university campuses, among them, 19 Historically Black Colleges and Universities (HBCUs) and other Minority Serving Institutions (MSIs). The target population will be surveyed to also understand their current and likely participation in guided nature experiences and knowledge base in climate science. Current best practices in guided nature experiences will be gathered from across the Audubon network. The implementation efforts will result in a national STEM model, with train-the-trainer guides and workshops for informal science educators and public engagement opportunities focused on improving the state and condition of avian habitats and communities through climate science research. An external evaluation will be conducted and will include data collection methods such as retrospective pre and post surveys, semi-structured interviews, focus groups, and an embedded assessment to determine impact. The findings will be used to iteratively refine the evidence-based curriculum and measure STEM learning outcomes for the guided nature experience participants. The evaluation will address four areas: (1) fidelity of program implementation to promote accountability; (2) formative evaluation to understand needs and interests of young adults (ages 18-25), and subsequently inform program design; (3) outcomes for Center educators, to inform iterative improvement; and (4) outcomes for program participants, to contribute to the growing knowledge base on effective practices for STEM learning in informal settings.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Loren Smith Mark Scallion Heather Starck
resource research Professional Development, Conferences, and Networks
In order to engage visitors, guests, participants or audiences in positive STEM learning experiences, informal learning institutions need professionals who understand how to design for and facilitate engaging activities. Initial professional training for informal STEM educators, and subsequent ongoing professional learning create considerable challenges. There is a need for providing informal STEM educators with pathways to professionalization that guarantee high quality educators who can support successful informal STEM education. In this symposium, we propose to share research on key aspects
DATE:
resource project Public Programs
The employment demands in STEM fields grew twice as fast as employment in non-STEM fields in the last decade, making it a matter of national importance to educate the next generation about science, engineering and the scientific process. The need to educate students about STEM is particularly pronounced in low-income, rural communities where: i) students may perceive that STEM learning has little relevance to their lives; ii) there are little, if any, STEM-related resources and infrastructure available at their schools or in their immediate areas; and iii) STEM teachers, usually one per school, often teach out of their area expertise, and lack a network from which they can learn and with which they can share experiences. Through the proposed project, middle school teachers in low-income, rural communities will partner with Dartmouth faculty and graduate students and professional science educators at the Montshire Museum of Science to develop sustainable STEM curricular units for their schools. These crosscutting units will include a series of hands-on, investigative, active learning, and standards-aligned lessons based in part on engineering design principles that may be used annually for the betterment of student learning. Once developed and tested in a classroom setting in our four pilot schools, the units will be made available to other partner schools in NH and VT and finally to any school wishing to adopt them. In addition, A STEM rural educator network, through which crosscutting units may be disseminated and teachers may share and support each other, will be created to enhance the teachers’ ability to network, seek advice, share information, etc.
DATE: -
TEAM MEMBERS: Roger Sloboda
resource project Public Programs
This application requests support to enable a team of experienced science educators and biomedical and behavioral health network scientists to develop and implement the Worlds of Connections curriculum. Most middle school students are familiar with patient care-related health careers (e.g., nurses, dentists, surgeons), but few know about emerging careers in network science that can be leveraged to improve population health. This innovative and research-based science program is strategically designed to increase awareness of, understanding of, and interest in the important role of network science for health. This project will design learning activities that incite interest in network science applications to biomedical and public health research. The long- term goal is to enhance the diversity of the bio-behavioral and biomedical workforce by increasing interest in network science among members of underrepresented minority communities and to promote public understanding of the benefits of NIH-funded research for public health. The goal of this application is to identify and create resources that will overcome barriers to network science uptake among underserved minority middle school youth. The central hypothesis is that the technology-rich field of network science will attract segments of today’s youth who remain uninterested in conventional, bio-centric health fields. Project activities are designed to improve understanding of how informal STEM experiences with network science in health research can increase STEM identities, STEM possible selves, and STEM career aspirations among youth from groups historically underrepresented in STEM disciplines at the center of health science research (Aim 1) and create emerging media resources via augmented reality technologies to stimulate broad interest in and understanding of the role of network science in biomedical and public health research (Aim 2). A team led by University of Nebraska-Lincoln sociologists will partner with the University of Nebraska at Omaha; state museums; centers for math, science, and emerging media arts; NIH-funded network scientists; educators; community learning centers at local public schools; learning researchers; undergraduates; software professionals; artists; augmented reality professionals; storytellers; and evaluation experts to accomplish these goals and ensure out of school learning will reinforce Next Generation Science Standards. The Worlds of Connections project is expected to impact 35,250 youth and 20,570 educators in Lincoln and Omaha, Nebraska by: adding network science modules to ongoing 6th-8th-grade afterschool STEM clubs in community learning centers; adding network science for health resources to a summer graduate course on “activating youth STEM identities” for sixth to twelfth grade STEM teachers; connecting teachers with local network scientists; creating free, downloadable, high-quality emerging media arts-enhanced stories; and publishing peer-reviewed research on the potential of network science to attract youth to health careers. Coupled with the dissemination plan, the project design and activities will be replicable, allowing this project to serve as a model to guide other projects in STEM communication.

PUBLIC HEALTH RELEVANCE:
The lack of public understanding about the role of network science in the basic biological and social health sciences limits career options and support for historically underrepresented groups whose diverse viewpoints and questions will be needed to solve the next generation of health problems. The Worlds of Connections project will combine network science, social science, learning research, biology, computer science, mathematics, emerging media arts, and informal science learning expertise to build a series of monitored and evaluated dissemination experiments for middle school science education in high poverty schools. Broad dissemination of the curriculum and project impacts will employ virtual reality technologies to bring new and younger publics into health-related STEM careers.
DATE: -
TEAM MEMBERS: Julia Mcquilan Grace Stallworth
resource project Professional Development, Conferences, and Networks
This broadening participation project will focus on a regional workshop aimed at increasing Historically Black Colleges and Universities' (HBCUs) capacity to develop high quality proposals for future competitions of various programs in the Division of Research on Learning. The proposed effort will occur through three specific steps involving a: (1) pre-workshop webinar to introduce and lay the foundation for the opportunity; (2) full two-day workshop to engage participants in a rigorous grant-writing exercise; and (3) post workshop follow-up to provide ongoing support and proposal development guidance. Through a theory-driven process, the goal is to establish some degree of conformity for maximizing grant productivity around strategies and ideas shown to be effective in retaining students in the STEM pipeline.

The multi-tiered workshop will establish a launching pad for increasing attendees' capacity to build on prior knowledge and use best practices to improve future grant writing efforts. Specialized activities will help prepare HBCUs to increase their contributions to diversifying the future STEM workforce, support innovation and creativity in STEM fields, expand networking strategies, and promote opportunities to learn. Central to this capacity-building effort will be a focus on understanding the current research context and expectations for competitive participation in funding opportunities offered by NSF. This, in turn, will align with the Foundation's strategic direction for broadening participation in STEM through meaningful cutting-edge STEM education research. Resources from the workshop will be made available online to facilitate broader dissemination of information beneficial to HBCUs and other education institutions engaging in broadening participation efforts.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Ivory Toldson
resource project Public Programs
Consideration of the needs of individuals with a wide range of disabilities is not always considered in the early design stages of an informal STEM learning (ISL) activity or program. The primary access approach for people with disabilities becomes the provision of accommodations once the ISL product or environment is created. In contrast, the Universal Design approach considers users with a wide range of characteristics throughout the design process and works to create products and environments that are accessible, usable, and inclusive. This project, called AccessISL, led by the University of Washington's DO-IT (Disabilities, Opportunities, Internetworking and Technology) Center and Museology Program, includes an academic museology program and local ISL sites, representing museums, zoos, aquariums, makerspaces, science centers, and other sites of informal STEM learning. Insights will be gained through the engagement of people with disabilities, museology graduate students and faculty, and ISL practitioners. The AccessISL project model, composed of a set of approaches and interventions, builds on existing research and theory in the fields of education science, change management, effective ISL practices, and inclusive design processes. The project will collect evidence of policies and practices (or lack thereof) that improve the inclusiveness of ISL with respect to a wide range of disabilities and considers approaches for the design and development of new strategies; explores what stakeholders need to make change happen; uncovers challenges to the adoption of inclusive practices in public ISL settings and explores ways to overcome them; and proposes relevant content that might be included in museology curriculum. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project addresses the following two objectives:


For ISL personnel and museology faculty: to increase knowledge, skills, and actions to make ISL programs, facilities, courses, and resources more welcoming and accessible to participants with disabilities and embed relevant practices within their work.
For postsecondary STEM students with disabilities and museology students: to increase knowledge and skills in advocating for ISL offerings that are welcoming and accessible to everyone, including those with a wide variety of disabilities, and to encourage individuals with disabilities to pursue careers in ISL.


The project employs a student-centered approach and a set of practices that embrace the social model of disability, social justice education, disability as a diversity issue, intersectionality, and Universal Design. A leadership team of interns--each member a STEM student with a disability or a museology graduate student--along with project staff will engage with the University of Washington's Museology Program to identify and implement strategies for making ISL activities and courses more welcoming and accessible to individuals with disabilities. An online community of practice will be developed from project partners and others nationwide. A one-day capacity building institute will be held to include presentations, student/personnel panels for sharing project and related experiences, and group discussions to explore issues and further identify systemic changes to make ISL programs more welcoming and accessible to individuals with disabilities. As prototypes of the AccessISL Model are developed, evaluation activities will primarily be formative (looking for strengths and weaknesses) and remedial (identifying/implementing changes that could be made to improve the model). The model will continue to be fine-tuned through formative evaluation. Evaluation of the model components will focus on the experience of a range of stakeholders in the project. Specifically, quantitative data collected will include levels and quality of engagement, accessibility recommendations and products developed, and delivery of ISL services. Qualitative data will be collected through observations, surveys, focus groups, interviews, and case studies.

AccessISL project products will include proceedings of an end-of-project capacity building institute, promising practices, case studies, a video, and other online resources to help ISL practitioners and museology faculty that will result in making future ISL opportunities more inclusive of people with disabilities. AccessISL will advance knowledge and ensure long-term impact using multiple strategies:


broadening the STEM participation of people with disabilities as well as women, racial/ethnic minorities, and other underrepresented groups through the application of universal design
strengthening associations and creating synergy and durable relationships among stakeholders,
encouraging teaching about disability, accessibility, and universal design in museology courses,
empowering students with disabilities and current and future ISL practitioners to advocate for accessible ISL and develops an infrastructure to promote accessible ISL programs nationwide, and
contributing to the body of promising practices with products that will (a) enhance understanding of issues related to the inclusion of people with disabilities in ISL programs and (b) promote inclusive practices.


Outcomes will benefit society by making STEM opportunities available to more people and enhancing STEM fields with the talents and perspectives of people with disabilities.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Sheryl Burgstahler Meena Selvakumar
resource project Public Programs
This award was provided as part of NSF's Social, Behavioral and Economic Sciences Postdoctoral Research Fellowships (SPRF) program and is supported by SBE's Developmental Sciences program and the Directorate for Education and Human Resources' (EHR) Advancing Informal STEM Learning program. The goal of the SPRF program is to prepare promising, early career doctoral-level scientists for scientific careers in academia, industry or private sector, and government. SPRF awards involve two years of training under the sponsorship of established scientists and encourage Postdoctoral Fellows to perform independent research. NSF seeks to promote the participation of scientists from all segments of the scientific community, including those from underrepresented groups, in its research programs and activities; the postdoctoral period is considered to be an important level of professional development in attaining this goal. Each Postdoctoral Fellow must address important scientific questions that advance their respective disciplinary fields. Under the sponsorship of Dr. Sandra D. Simpkins at the University of California, Irvine, this postdoctoral fellowship award supports an early career scientist exploring high-quality and culturally responsive, math afterschool program (ASP) practices for under-represented minority (URM) youth. Mathematical proficiency is the foundation of youth's STEM pursuits. Yet today, far too many youth do not pursue STEM based on a perception that they are "not good at math". Students need to engage in contexts that spark their interest and their continued mastery and growth. ASPs are settings for such dynamic opportunities, particularly for URM students such as Latinos who attend lower quality schools and do not feel supported. In college, URM students often struggle with uninspiring and culturally incongruent STEM learning environments. The intergenerational nature of university-based STEM ASPs, whereby younger students are paired with undergraduate (UG) mentors, are opportunities to support both K-12 and UG students' motivational beliefs in math and STEM more broadly. This project will examine these intergenerational developmental processes in the context of a math enrichment ASP located at a Hispanic-Serving Institution. By studying how ASPs can serve as an important lever for promoting URM students' access and success in STEM, this project seeks to meaningfully inform efforts to broaden the participation of underrepresented groups in these fields.

This project seeks to understand how participating in a math enrichment ASP supports both youth participants' and UG mentors' motivational beliefs in math; to describe high-quality and culturally responsive practices; and to understand how to support the effectiveness of youth-staff relationships. To accomplish these research objectives, data will be collected from both youth participants and UG mentors through multiple methods including surveys, in-depth interviews, participant-observations, and video observations of youth-staff interactions. This project will add to our understanding of university-ASP partnerships. Further, the knowledge gained from this study will impact the larger landscape of practice and research on STEM ASPs by 1) addressing critical gaps in the current literature on high-quality and culturally responsive STEM ASP practices and 2) informing ASP staff development training. Overall, this mixed methods project will provide critical and rich information on the ways that ASPs can effectively deliver on its promise of promoting positive development for all youth, especially URM youth who may need and benefit from these spaces the most. The invaluable insight garnered from this study will be disseminated to traditional academic audiences to advance knowledge, as well as to local, state, and national organizations to inform the larger landscape of practice in STEM ASPs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Mark Vincent Yu Sandra Simpkins
resource project Media and Technology
People of color who live in low income, urban communities experience lower levels of educational attainment than whites and continue to be underrepresented in science at all educational and professional levels. It is widely accepted that this underrepresentation in science is related, not only to processes of historical exclusion and racism, but to how science is commonly taught and that investigating authentic, relevant science questions can improve engagement and learning of underrepresented students. Approaching science in these ways, however, requires new teaching practices, including ways of relating cross-culturally. In addition to inequity in science and broader educational outcomes, people of color from low income, urban communities experience high rates of certain health problems that can be directly or indirectly linked to mosquitoes. Recognizing that undertaking public health research and preventative outreach efforts in these communities is challenging, there is a critical need for an innovative approach that leverages local youth resources for epidemiological inquiry and education. Such an approach would motivate the pursuit of science among historically-excluded youth while, additionally, involving pre-service, in-service, and informal educators in joint participatory inquiry structured around opportunities to learn and practice authentic, ambitious science teaching and learning.

Our long-term goal is to interrupt the reproduction of educational and health disparities in a low-income, urban context and to support historically-excluded youth in their trajectories toward science. This will be accomplished through the overall objective of this project to promote authentic science, ambitious teaching, and an orientation to science pursuits among elementary students participating in a university-school-community partnership promise program, through inquiry focused on mosquitoes and human health. The following specific aims will be pursued in support of the objective:

1. Historically-excluded youth will develop authentic science knowledge, skills, and dispositions, as well as curiosity, interest, and positive identification with science, and motivation for continued science study by participating in a scientific community and engaging in the activities and discourses of the discipline. Teams of students and educators will engage in community-based participatory research aimed at assessing and responding to health and well-being issues that are linked to mosquitoes in urban, low-income communities. In addition, the study of mosquitoes will engage student curiosity and interest, enhance their positive identification with science, and motivate their continued study.

2. Informal and formal science educators will demonstrate competence in authentic and ambitious science teaching and model an affirming orientation toward cultural diversity in science. Pre-service, in-service, and informal educators will participate in courses and summer institutes where they will be exposed to ambitious teaching practices and gain proficiency, through reflective processes such as video study, in adapting traditional science curricula to authentic science goals that meet the needs of historically excluded youth.

3. Residents in the community will display more accurate understandings and transformed practices with respect to mosquitoes in the urban ecosystem in service of enhanced health and well-being. Residents will learn from an array of youth-produced, culturally responsive educational materials that will be part of an ongoing outreach and prevention campaign to raise community awareness of the interplay between humans and mosquitoes.

These outcomes are expected to have an important positive impact because they have potential for improving both immediate and long-term educational and health outcomes of youth and other residents in a low-income, urban community.
DATE: -
TEAM MEMBERS: Katherine Richardson Bruna Lyric Colleen Bartholomay
resource project Media and Technology
Recruiting more research scientists from rural Appalachia is essential for reducing the critical public health disparities found in this region. As a designated medically underserved area, the people of Appalachia endure limited access to healthcare and accompanying public health education, and exhibit higher disease incidences and shorter lifespans than the conventional U.S. population (Pollard & Jacobsen, 2013). These health concerns, coupled with the fact that rural Appalachian adults are less likely to trust people from outside their communities, highlights the need for rural Appalachian youth to enter the biomedical, behavioral, and clinical research workforce. However, doing so requires not only the specific desire to pursue a science, technology, engineering, math, or medical science (STEMM) related degree, it also requires the more general desire to pursue post-secondary education at all. This is clearly not occurring in Tennessee’s rural Appalachian regions where nearly 75% of adults realize educational achievements only up to the high school level. Although a great deal of research and intervention has been done to increase students’ interest in STEMM disciplines, very little research has considered the unique barriers to higher education experienced by rural Appalachian youth. A critical gap in past interventions research is the failure to address these key pieces of the puzzle: combatting real and perceived barriers to higher education and STEMM pursuits in order to increase self-efficacy for, belief in the value of, and interest in pursuing an undergraduate degree. Such barriers are especially salient for rural Appalachian youth.
Our long-range goal is to increase the diversity of biomedical, clinical and behavioral research scientists by developing interventions that both reduce barriers to higher education and increase interest in pipeline STEMM majors among rural Appalachian high school students. Our objective in this application is to determine the extent to which a multifaceted intervention strategy combining interventions to address the barriers to and supports for higher education with interventions to increase interest in STEMM fields leads to increased intentions to pursue an undergraduate STEMM degree. Our hypothesis is that students who experience such interventions will show increases in important intrapersonal social-cognitive factors and in their intentions to pursue a postsecondary degree than students not exposed to such interventions. Based on the low numbers of students from this region who pursue post-secondary education and the research demonstrating the unique barriers faced by this and similar populations (Gibbons & Borders, 2010), we believe it is necessary to reduce perceived barriers to college-going in addition to helping students explore STEMM career options. In other words, it is not enough to simply offer immersive and hands-on research and exploratory career experiences to rural Appalachian youth; they need targeted interventions to help them understand college life, navigate financial planning for college, strategize ways to succeed in college, and interact with college-educated role models. Only this combination of general college-going and specific STEMM-field information can overcome the barriers faced by this population. Therefore, our specific aims are:

Specific Aim 1: Understand the role of barriers to and support for higher education in Appalachian high school students’ interest in pursuing STEMM-related undergraduate degrees. We will compare outcomes for students who participate in our interventions, designed to proactively reduce general college-going barriers while increasing support systems, to outcomes for students from closely matched schools who do not participate in these interventions to determine the extent to which such low-cost interventions, which can reach large numbers of students, are effective in increasing rural Appalachian youth’s intent to pursue STEMM-related undergraduate degrees.

Specific Aim 2: Develop sustainable interventions that decrease barriers to and increase support for higher education and that increase STEMM-related self-efficacy and interest. Throughout our project, we will integrate training for teachers and school counselors, nurture lasting community partnerships, and develop a website with comprehensive training modules to allow the schools to continue implementing the major features of the interventions long after funding ends.

This research is innovative because it is among the first to recognize the unique needs of this region by directly addressing barriers to and supports for higher education and integrating such barriers-focused interventions with more typical STEMM-focused interventions. Our model provides opportunities to assess college-going and STEMM-specific self-efficacy, outcome expectations, and barriers/supports, giving us a true understanding of how to best serve this group. Ultimately, this project will allow future researchers to understand the complex balance of services needed to increase the number of rural Appalachians entering the biomedical, behavioral, and clinical research science workforce.
DATE: -
TEAM MEMBERS: Melinda Miller Gibbons Erin Hardin
resource project Public Programs
The goal of the Hawaii Science Career Inspiration grant (HiSCI) is to enhance science education resources and training available to teachers and students in disadvantaged communities of Hawaii in order to ensure a maximally large and diverse workforce to meet the nation’s biomedical, behavioural and clinical research needs. The HiSCI Program will build on the knowledge gained from two past SEPA grants and the University of Hawaii Center for Cardiovascular Research and leverage resources from all corners of the state to accomplish four specific aims:

1) Increase student interest and exposure to health science careers by providing multiple science exposure opportunities and mentoring along the primary, intermediate, and secondary school experiences for at least 300 students a year and a printed and web-based STEM career resource guide and career posters to alert students, counsellors and teachers to all available opportunities;

2) Provide professional development for 20 middle and high school teachers a year, to include scientific content and foster an understanding of the scientific research process, in addition to medical students mentoring intermediate and high school students;

3) Listen, respond to, and connect the science teacher community in Hawaii by holding innovative listening groups for teachers across the state; and

4) Provide tools and supplies for at least twenty K-12 classrooms a year through a mini-grant process and alert teachers across the state to free resources both locally and nationally. The HiSCI Program is highly relevant to Hawaii’s public health and science infrastructure as it will provide an innovative way to gain knowledge of science training needs and will provide many of the resources to teachers and students across the state by leveraging, communicating and sharing existing resources.
DATE: -
TEAM MEMBERS: Kelley Withy Rachel Boulay