Skip to main content

Community Repository Search Results

resource project Public Programs
This 4-year project addresses fundamental equity issues in informal Science, Technology, Engineering and Mathematics (STEM) learning. Access to, and opportunities within informal STEM learning (ISL) remain limited for youth from historically underrepresented backgrounds in both the United States and the United Kingdom. However, there is evidence that ISL experiences can expand opportunities for youth learning and development in STEM, for instance, increase positive attitudes towards educational aspirations and future careers/pursuits, improve grades and test scores in school settings, and decrease disciplinary action and dropout rates. Through research and development, this project brings together researchers and practitioners to focus on the experiences, practices and tools that will support equitable youth pathways into STEM. Working across conceptual frameworks and ISL settings (e.g. science centers, community groups, zoos) and universities in four urban contexts in two different nations, the partnership will produce a coherent knowledge base that strengthens and expands research plus practice partnerships, builds capacity towards transformative research and development, and develops new models and tools in support of equitable pathways into STEM at a global level. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.

This Equity Pathways project responds to three challenges at the intersections of ISL research and practice in the United States and the United Kingdom: 1) lack of shared understanding of how youth from historically underrepresented backgrounds perceive and experience ISL opportunities across national contexts, and the practices and tools needed to support empowered movement through ISL; 2) limited shared understanding and evidence of core high-leverage practices that support such youth in progressing within and across ISL, and 3) limited understanding of how ISL might be equitable and transformative for such youth seeking to develop their own pathways into STEM. The major goal of this Partnership is for practitioners and researchers, working with youth through design-based implementation research, survey and critical ethnography, to develop new understandings of how and under what conditions they participate in ISL over time and across settings, and how they may connect these experiences towards pathways into STEM. The project will result in: 1) New understandings of ISL pathways that are equitable and transformative for youth from historically underrepresented backgrounds; 2) A set of high leverage practices and tools that support equitable and transformative informal science learning pathways (and the agency youth need to make their way through them); and 3) Strengthened and increased professional capacity to broaden participation among youth from historically underrepresented backgrounds in STEM through informal science learning. The project will be carried out by research + practice partnerships in 4 cities: London & Bristol, UK and Lansing, MI & Portland, OR, US, involving university researchers (University College London, Michigan State University, Oregon State University/Institute for Learning Innovation) practitioners in science museums (@Bristol Science Centre, Brent Lodge Park Animal Centre, Impressions 5, Oregon Museum of Science & Industry) and community-based centers (STEMettes, Knowle West Media Centre, Boys & Girls Clubs of Lansing, and Girls, Inc. of the Pacific Northwest).
DATE: -
resource project Informal/Formal Connections
Diversity in the STEM workforce is essential for expanding the talent pool and bringing new ideas to bear in solving societal problems, yet entrenched gaps remain. In STEM higher education, students from certain racial and ethnic groups continue to be underrepresented in STEM majors and fields. Colleges and universities have responded by offering precollege STEM programs to high school students from predominantly underrepresented groups. These programs have been shown to positively affect students' analytical and critical thinking skills, STEM content knowledge and exposure, and self-efficacy through STEM-focused enrichment and research experiences. In fact, salient research suggests that out-of-school-time, precollege STEM experiences are key influencers in students' pursuit of STEM majors and careers, and underscore the value of precollege STEM programs in their ability to prepare students in STEM. This NSF INCLUDES Alliance: STEM PUSH - Pathways for Underrepresented Students to Higher Education Network - will form a national network of precollege STEM programs to actualize their value through the creation, spread and scale of an equitable, evidence-based pathway for university admissions - precollege STEM program accreditation. Building on several successful NSF INCLUDES Design and Development Launch Pilots, this Alliance will use a networked improvement community approach to transform college admissions by establishing an accreditation process for precollege STEM programs in which standards-based credentials serve as indicators of program quality that are recognized by colleges and universities as rigorous and worthy of favorable consideration during undergraduate admissions processes. Given the high enrollment of students from underrepresented groups in precollege STEM programs, the Alliance endeavors to broaden participation in STEM by maximizing college access and STEM outcomes in higher education and beyond.

The STEM PUSH Network is a national alliance of precollege STEM programs, STEM and culturally responsive pedagogy experts, formal and informal education practitioners, college admissions professionals, the accreditation sector, and other higher education representatives. The Alliance will establish a formidable collaborative improvement space using the networked improvement community model and a "next generation" accreditation model that will serve as a mechanism for communicating the power of precollege programs to admissions offices. Framing this work is the notion that the accreditation of precollege STEM programs is an equitable supplemental admissions criterion to the current, often cited as a culturally biased, standardized test score-based system. To achieve its shared vision and goals, the Alliance has four key objectives: (1) establish and support a national precollege STEM program networked community, (2) develop a standards-based precollege STEM program accreditation system to broaden participation in STEM, (3) test and validate the model within the networked improvement community, and (4) spread, scale, and sustain the model through its backbone organization, the STEM Learning Ecosystem Community of Practice. Each objective will be closely monitored and evaluated by an external evaluator. In addition, the data infrastructure developed through this Alliance will provide an unprecedented opportunity to advance scholarship in the fields of networked improvement community design and development, the efficacy of STEM precollege programs, and effective practices for broadening participation pathways from high school to higher education. By the end of five years, the STEM PUSH Network will transform ten urban ecosystems across the country into communities where students from underrepresented groups have increased college access and therefore, entree to STEM opportunities and majors in higher education. The model has the potential to be replicated by another 80 STEM ecosystems that will have access to Alliance materials and strategies through the backbone organization.

This NSF INCLUDES Alliance is funded by NSF Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES), a comprehensive national initiative to enhance U.S. leadership in discoveries and innovations by focusing on diversity, inclusion and broadening participation in STEM at scale. It is also co-funded by the NSF Innovative Technology Experiences for Students and Teachers program and the Advancing Informal STEM Learning Program.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Alison Slinskey Legg Jan Morrison Jennifer Iriti Alaine Allen David Boone
resource project Public Programs
The RASOR project is designed to increase engagement of students from rural Alaska communities in biomedical/STEM careers. Rural Alaskan communities are home to students of intersecting identities underrepresented in biomedical science, including Alaska Native, low-income, first generation college, and rural. Geographic isolation defines these communities and can limit the exposure of students to scientifically-minded peers, professional role models, and science career pathways. However these students also have a particularly strong environmental connection through subsistence and recreational activities, which makes the one-health approach to bio-medicine an intuitive and effective route for introducing scientific research and STEM content. In RASOR, we will implement place-based mentored research projects with students in rural Alaskan communities at the high school level, when most students are beginning to seriously consider career paths. The biomedical one-health approach will build connections between student experiences of village life in rural Alaska and biomedical research. Engaging undergraduate students in research has proved one of the most successful means of increasing the persistence of minority students in science (Kuh 2008). Furthermore, RASOR will integrate high school students into community-based participatory research (Israel et al. 2005). This approach is designed to demonstrate the practicality of scientific research, that science has the ability to support community and cultural priorities and to provide career pathways for individual community members. The one-health approach will provide continuity with BLaST, an NIH-funded BUILD program that provides undergraduate biomedical students with guidance and support. RASOR will work closely with BLaST, implementing among younger (pre-BLaST) students approaches that have been successful for retaining rural Alaska students along STEM pathways and tracking of post-RASOR students. Alaska Native and rural Alaska students are a unique and diverse population underrepresented in biomedical science and STEM fields.
DATE: -
TEAM MEMBERS: Janice Straley Ellen Chenowith
resource project Public Programs
For nearly 20 years, the UAB Center for Community OutReach Development (CORD) has conducted SEPA funded research that has greatly enhanced the number of minority students entering the pipeline to college and biomedical careers, e.g., nearly all of CORD’s Summer Research Interns since 1998 (>300) have completed/are completing college and most of them are continuing on to graduate biomedical research and/or clinical training and careers. CORD’s programs that focused on high and middle school students have drawn many minority students into biomedical careers, but a low percentage of minority students benefit from these programs because far too many are already left behind academically in grades 4-6, due, at least in part, to a significant drop in science grades between grades 4 and 6, a drop from which most students never recover. A major contributor to this effect is that most grade 4-6 teachers in predominantly minority schools lack significant formal training in science and often are not fully aware of the great opportunities offered by biomedical careers.

In SEEC II, CORD will deliver intensive inquiry-based science training to grade 4-6 teachers, providing them with science content and hands-on science experiences that will afford their student both content and skills that will make them excited about, and competitive for, the advanced courses needed to move into biomedical research careers. SEEC II will also link teachers together across the elementary/middle school divide and bring the teachers together with administrators and parents, who will experience firsthand the excitement that inquiry learning brings and the significant advancement it provides in science and in reading and math. At monthly meetings and large annual celebrations, the parents, teachers and administrators will learn about the opportunities that biomedical careers can provide for the student who is well prepared. They will also consider the financial and educational steps required to ensure that students have the ability to reach these professions.

SEEC II will also expand CORD’s middle school LabWorks and Summer Science Camps to include grade 4-5 students and provide the teachers with professional learning in informal settings. During summer training, in small groups, the teachers will expand one of the inquiry-based science activities that they complete in the training, and they will use these in their classrooms and communicate with the others in their group to perfect these experiences in the school year. Finally, the teachers and grade 4-5 students will develop science and engineering fair-type research projects with which they will compete both on the school level and at the annual meeting. Thus, the students will share with their parents the excitement that science brings. The Intellectual Merit of SEEC II will be to test a model to enhance grade 4-6 teacher development and vertical alignment, providing science content, exposure to biomedical scientists and training in participatory science experiments, thus positioning teachers to succeed. The Broader Impacts will include the translation and testing of a science education model to assist minority students to avoid the middle school plunge and reach biomedical careers.
DATE: -
TEAM MEMBERS: J. Michael Weiss
resource project Public Programs
The concept of One Health emphasizes the connection between human health, the health of animals and the health of the environment – with the goal of improving all health. The One Health approach supports collaborations between physicians, veterinarians, dentists, nurses, ecologists, and other science, health and environmentally-related disciplines. The One Health approach is increasingly important as our population rises, agriculture intensifies, and habitat destruction increases.

The goal of our “One Health” project is to increase adolescents’ understanding of One Health concepts and the importance of One Health collaborations. We will accomplish this by developing and disseminating: (1) Classroom lessons for high school students that are case-based, incorporate hands-on activities, and align with the Next Generation Science Standards, and; (2) Activities for middle and high school students that are suitable for use in a variety of informal (non-school) education settings. During this five-year project we will:
• Collaborate with scientists and life science teachers to develop case-based, hands-on One Health lessons for high school students.
• Develop and use a reliable and valid pre/post assessment to determine the impact of the One Health lessons on student learning.
• Implement a dissemination plan in which we will recruit, train and support a national network of “teacher-presenters” to lead professional development workshops for their peers throughout the US.
• Develop activities that will be used for middle school and high school One Health field trip programs at the University of Rochester’s Life Sciences Learning Center.
• Collaborate with informal educators to create One Health activities to be used in their outreach programs.

This project is significant because it will improve students’ understanding of the One Health approach to promoting the health of people, animals, and the environment. This project will also significantly impact teachers’ awareness of One Health, and how One Health concepts are aligned with NGSS and can be incorporated into their existing curriculums. This project is innovative because it will develop One Health lessons and activities for use in a variety of settings, through partnerships with scientists, science teachers, and informal science educators. This project will also feature an innovative model for disseminating the One Health lessons to teachers nationwide using peer-to-peer professional development.
DATE: -
TEAM MEMBERS: Dina Markowitz
resource project Public Programs
The employment demands in STEM fields grew twice as fast as employment in non-STEM fields in the last decade, making it a matter of national importance to educate the next generation about science, engineering and the scientific process. The need to educate students about STEM is particularly pronounced in low-income, rural communities where: i) students may perceive that STEM learning has little relevance to their lives; ii) there are little, if any, STEM-related resources and infrastructure available at their schools or in their immediate areas; and iii) STEM teachers, usually one per school, often teach out of their area expertise, and lack a network from which they can learn and with which they can share experiences. Through the proposed project, middle school teachers in low-income, rural communities will partner with Dartmouth faculty and graduate students and professional science educators at the Montshire Museum of Science to develop sustainable STEM curricular units for their schools. These crosscutting units will include a series of hands-on, investigative, active learning, and standards-aligned lessons based in part on engineering design principles that may be used annually for the betterment of student learning. Once developed and tested in a classroom setting in our four pilot schools, the units will be made available to other partner schools in NH and VT and finally to any school wishing to adopt them. In addition, A STEM rural educator network, through which crosscutting units may be disseminated and teachers may share and support each other, will be created to enhance the teachers’ ability to network, seek advice, share information, etc.
DATE: -
TEAM MEMBERS: Roger Sloboda
resource project Public Programs
This application requests support to enable a team of experienced science educators and biomedical and behavioral health network scientists to develop and implement the Worlds of Connections curriculum. Most middle school students are familiar with patient care-related health careers (e.g., nurses, dentists, surgeons), but few know about emerging careers in network science that can be leveraged to improve population health. This innovative and research-based science program is strategically designed to increase awareness of, understanding of, and interest in the important role of network science for health. This project will design learning activities that incite interest in network science applications to biomedical and public health research. The long- term goal is to enhance the diversity of the bio-behavioral and biomedical workforce by increasing interest in network science among members of underrepresented minority communities and to promote public understanding of the benefits of NIH-funded research for public health. The goal of this application is to identify and create resources that will overcome barriers to network science uptake among underserved minority middle school youth. The central hypothesis is that the technology-rich field of network science will attract segments of today’s youth who remain uninterested in conventional, bio-centric health fields. Project activities are designed to improve understanding of how informal STEM experiences with network science in health research can increase STEM identities, STEM possible selves, and STEM career aspirations among youth from groups historically underrepresented in STEM disciplines at the center of health science research (Aim 1) and create emerging media resources via augmented reality technologies to stimulate broad interest in and understanding of the role of network science in biomedical and public health research (Aim 2). A team led by University of Nebraska-Lincoln sociologists will partner with the University of Nebraska at Omaha; state museums; centers for math, science, and emerging media arts; NIH-funded network scientists; educators; community learning centers at local public schools; learning researchers; undergraduates; software professionals; artists; augmented reality professionals; storytellers; and evaluation experts to accomplish these goals and ensure out of school learning will reinforce Next Generation Science Standards. The Worlds of Connections project is expected to impact 35,250 youth and 20,570 educators in Lincoln and Omaha, Nebraska by: adding network science modules to ongoing 6th-8th-grade afterschool STEM clubs in community learning centers; adding network science for health resources to a summer graduate course on “activating youth STEM identities” for sixth to twelfth grade STEM teachers; connecting teachers with local network scientists; creating free, downloadable, high-quality emerging media arts-enhanced stories; and publishing peer-reviewed research on the potential of network science to attract youth to health careers. Coupled with the dissemination plan, the project design and activities will be replicable, allowing this project to serve as a model to guide other projects in STEM communication.

PUBLIC HEALTH RELEVANCE:
The lack of public understanding about the role of network science in the basic biological and social health sciences limits career options and support for historically underrepresented groups whose diverse viewpoints and questions will be needed to solve the next generation of health problems. The Worlds of Connections project will combine network science, social science, learning research, biology, computer science, mathematics, emerging media arts, and informal science learning expertise to build a series of monitored and evaluated dissemination experiments for middle school science education in high poverty schools. Broad dissemination of the curriculum and project impacts will employ virtual reality technologies to bring new and younger publics into health-related STEM careers.
DATE: -
TEAM MEMBERS: Julia Mcquilan Grace Stallworth
resource project Public Programs
Underrepresented minorities (URMs) represent 33% of the US college age population and this will continue to increase (1). In contrast, only 26% of college students are URMs. In the area of Science Technology, Engineering and Mathematics (STEM), only 15% of college students completing a STEM major are URMs (2). While there have been gains in the percent of Hispanic and Black/African Americans pursuing college degrees, the number of Native American college students remains alarmingly low. In 2013, Native Americans represented only 1% of entering college students and less than 50% finished their degree. Moreover, 1% of students pursuing advanced degrees in STEM-related fields are Native American/Alaska Native. With regards to high school graduation rates, the percent of Native American/Alaska Native students completing high school has decreased with only 51% of students completing high school in 2010 compared to 62 % and 68% for Black and Latino students respectively. While identifying ways to retain students from all underrepresented groups is important, developing programs targeting Native American students is crucial. In collaboration with the Hopi community, a three-week summer course for Native American high school students at Harvard was initiated in 2001. Within three years, the program expanded to include three additional Native American communities. 225 students participated in the program over a 10-year period; and 98% of those responding to the evaluation completed high school or obtained a GED and 98% entered two or four year colleges including 6 students who entered Harvard. This program was reinitiated in 2015 and we plan to build on the existing structure and content of this successful program. Specifically, in collaboration with two Native American communities, the goal of the program is 1) to increase participants’ knowledge of STEM disciplines and their relevance to issues in participants’ communities via a three week case-based summer course for Native American high school students; 2) to help enhance secondary school STEM education in Native American communities by providing opportunities for curriculum development and classroom enhancement for secondary school teachers in the participating Native American communities; and 3) to familiarize students with the college experience and application process and enhance their readiness for college through workshops, college courses and internships. Through these activities we hope to 1) increase the number of Native American students completing high school; 2) increase the number of Native American students applying and being accepted to college; 3) increase the number of Native American students pursuing STEM degrees and careers; 4) increase the perception among Native American students that attending and Ivy plus institution is attainable; 5) increase the feeling of empowerment that they can help their community by pursuing advanced degrees in STEM.

PUBLIC HEALTH RELEVANCE:
This proposal supports a summer program for high school students and teachers from Native American communities. The program goals are to encourage students to complete high school and prepare them for college and to also consider degrees in science, technology, engineering, and math.
DATE: -
TEAM MEMBERS: Sheila Thomas
resource project Public Programs
This project will examine the characteristics and outcomes of a large sample of environmental education field trip programs for youth to elucidate program characteristics that most powerfully influence 21st century learning outcomes. Environmental education programs for youth, particularly day-long school trip programs, are popular and reside at the intersection of formal and informal STEM education. Such field trips provide opportunities for diverse audiences to participate in shared learning experiences, but current understanding of what leads to success in these programs is limited. This large-scale study will address this gap in knowledge by investigating the linkages between program characteristics and participant outcomes for at least 800 single-day environmental education field trip programs for youth in grades 5-8, particularly programs for diverse and underserved audiences. This study will result in the identification of evidence-based practices that will inform future program design for a wide variety of settings, including nature centers, national parks, zoos, museums, aquaria, and other locations providing informal environmental education programs.

This Research in Service to Practice study is guided by two research questions: 1) What program characteristics (context, design, and delivery) most powerfully influence learner self-determination and learner outcomes? And 2) Do the most influential program characteristics differ across diverse and underserved audiences (e.g. African American, Hispanic/Latino, economically disadvantaged) and contexts (e.g. rural versus urban)? This project will examine a wide range of program-related factors, including pedagogical approaches and contextual characteristics. A valid and reliable protocol for observing 78 program characteristics hypothesized to influence learner outcomes developed by a previous project will be used to systematically sample and observe 500 single-day environmental education field trip programs for youth in grades 5-8 distributed across at least 40 U.S. states and territories. Programs for diverse and underserved youth will be emphasized, and a diverse set of programs in terms of program type and context will be sought. Data from this sample will be combined with those of an existing sample of 334 programs provided by over 90 providers. The final combined sample of over 800 programs will provide sufficient statistical power to confidently identify which program components are most consistently linked with learning outcomes. This sample size will also enable stratification of the sample for examination of these relationships within relevant subpopulations. Principal component analyses will be used to reduce data in theoretically meaningful and statistically valid ways, and multilevel structural equation modeling will be employed to examine the influences of both participants' individual characteristics and program and context characteristics on participant outcomes. Since one research question focuses on whether program outcomes are the same across different audiences, the project will include at least 200 programs for each of three specific audiences to ensure sufficient statistical power for confidence in the results: primarily African American, primarily Hispanic/Latino, and primarily White.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Robert Powell Marc Stern Brandon Frensley
resource project Public Programs
Many of the Hispanic children and families who live in the Rio Grande Valley lack opportunities to engage in inspirational and educational experiences introducing Science, Technology, Engineering and Mathematics (STEM) concepts and related careers. The University of Texas, Rio Grande Valley (UTRGV) will adapt and research the "Energy and U Show," which will introduce thousands of children and families to an exciting and dramatic that shows interconverting different forms of energy. The show will meld the excitement of chemical demonstrations and the natural connection between energy and STEM education in a fully produced, on-stage science extravaganza. A foundational philosophy of the show is that there is additional real value in getting children and youth onto a college campus. For many of its participants, this is their first time sitting in a seat at a university, the first opportunity for them to envision themselves in this environment. In partnership with the University of Minnesota, which originally developed the show, UTRGV will adapt the show, now presented in English, to a bilingual, culturally accessible format that is designed to Hispanic family audiences and student groups in learning about energy and related careers. Evaluation results demonstrate that the show has effectively engaged thousands of Minnesota students. The target audience will be upper elementary (4th-5th grade), middle school students, and their parents. This project will be led by UTRGV, nation's second-largest Hispanic Serving Institution, with a student enrollment of 28,000, of which over 90% are Hispanic and more than 60% are first-generation college students). In addition to the show, the project will include: (1) a manual to guide implementation of the program and related resources at different national or international venues; (2) educational resources for parents, teachers and school counselors introducing STEM careers and specific STEM college majors; (3) mentoring of UTRGV faculty in outreach activities; and (4) dissemination of the show to other campuses and venues.

The project will conduct ongoing research and evaluation guiding the adaptation of the show and investigation of factors contributing to positive educational impacts of the project, which will be carried out by a bilingual/bicultural researcher. Project research instruments will measure student level of engagement, interest and learning, as well as college interest, in surveys and analysis of data pre and post demonstration. The project will specifically investigate the impact of language on student impacts. Each component of this project will be studied to determine program intervention effectiveness (the scientific demonstration and language of the demonstration). To determine program effectiveness, a baseline of data before program implementation will be established concerning Hispanic students, their persistence, and perceptions of the environment. The project will measure parent perceptions of STEM careers for their children through pre and post demonstration surveys and focus groups. Student and parent research participants will be able to use surveys or respond to other research activities in the language of their choice. Project findings will contribute to the knowledge base concerning how linguistically and culturally adapted science shows and related resources adapted into can have positive impacts regarding the STEM knowledge and careers of students and parents from low-income and Hispanic communities.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Karen Lozano Arturo Fuentes Aaron Massari Brian Warren
resource project Public Programs
Mentoring is a widely accepted strategy for supporting positive socioemotional and cognitive development across a variety of sectors including education, workforce development, and the justice system. An estimated 2.5 million volunteer mentors support youth development in the United States each year. However, there is broad concern that practice has outpaced empirical testing, with significant gaps in the research literature on important modifiers of mentoring relationships and their impacts. This is especially true for mentoring youth ages 10-14 in STEM. Studying highly successful programs may be one way to better understand the role of mentoring and moderators of mentoring effectiveness. The Science Club, a community-based STEM mentoring program for middle-grade youth in the Chicago area, will provide multiple sites for a research study to examine three important issues for advancing theory and practice for STEM mentoring. These issues include (1) understanding STEM mentoring for youth in the middle grades, (2) identifying outcomes and motivations for scientist mentors to more fully participate in mentoring programs, and (3) examining a model of middle-school-focused STEM mentoring collaboration.

Through a series of three studies, the team will investigate which elements of the mentoring relationships are associated with the demonstrated STEM identity gains in youth participants. The work will also contribute much-needed data on the impact of STEM mentoring relationships on the mentors themselves. Study 1 is designed as a retrospective study of program alumni, both youth and mentors, about the nature and extent of each their STEM identity shifts during their time in Science Club. A purposeful sample of 160+ youth and 100+ mentor alumni will participate. Study 2 is a prospective study of three consecutive cohorts of active Science Club participants, built on data and findings from Study 1. In Study 2, the team will design and implement a new Identity-Focused Mentoring Observation Instrument specifically aimed at exploring the nature and quality of mentoring relationships and their role in science identity development longitudinally. Three independent cohorts of 40 youth and 20 mentors each will participate. Study 3 is retrospective, examining how participating individuals and organizations perceive and are impacted by mentoring. The three studies employ a mixed methods approach utilizing surveys, observations, individual interviews, and document review.

This proposal will fill critical gaps in the mentoring literature regarding the formative middle school years through novel, empirical research. Building on the current literature and practice, outcomes of the work will inform practice and enhance knowledge-building in the field on both mentoring relationships and the collective impact of university-school-OST partnerships.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Michael Kennedy Rabiah Mayas Bernadette Sanchez
resource project Informal/Formal Connections
There are several critical reasons to understand and support interest development in early childhood: (a) as a primary motivator of engagement and learning; (b) interest development in preschool predicts important learning outcomes and behaviors in early elementary school; and (c) early childhood interests motivate ongoing interest development. Thus, there is growing recognition that interest is not just important but fundamental to education and learning. Head Start on Engineering (HSE) is a multi-component, bilingual (Spanish/English), family-focused program designed to (1) foster long-term interest in the engineering design process for families with preschool children from low-income backgrounds and (2) support family development and kindergarten readiness goals. The HSE program, co-developed with the Head Start community, provides families with developmentally appropriate, story-based engineering design challenges for the home and then connects these to a system of strategically aligned Informal STEM Education (ISE) experiences and resources. This current project, HSE Systems, builds on a previous HSE Pathways project which (a) established that participating families develop persistent engineering-related interests; (b) highlighted the value that the Head Start community has for the program and partnership; and (c) generated a novel, systems perspective on early childhood interest development. The aim of HSE Systems is to develop and test a model of early childhood STEM engagement and advance knowledge of how the family as a system develops interest in STEM from preschool into kindergarten.

Through the Design Based Implementation Research (DBIR) process, the team will iteratively refine and improve the HSE program and theory of change using ongoing feedback and data from staff, families, and partners. It is also designed to explore program impacts on family interest development over a longer period, as children enter kindergarten. The DBIR work will focus primarily on the program model questions, while the case study research will focus on the family interest questions, with both strands informing each other. The initial work is organized around a series of feedback and design-testing cycles to gather input from families and other stakeholders, update the program components and activities in collaboration with families and staff, and prepare for full implementation. During the next phase, the team will implement the full program model with six Head Start classrooms and track family experiences and interest development into kindergarten. During final implementation phase, the team will finish data collection, conduct retrospective analysis with all the data, and update the program model and theory of change.

This project will directly address the AISL program goals by broadening access to early childhood informal STEM education for low-income communities, with a focus on Spanish-speaking families, and building long-term skills and learning dispositions to support STEM learning inside and outside of school. Beyond the topic of engineering, HSE supports Head Start school readiness and child and family development goals, which are the foundation of lifelong success.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -