Skip to main content

Community Repository Search Results

resource research Media and Technology
Science Hunters is an outreach project which employs the computer game Minecraft to engage children with scientific learning and research through school visits, events, and extracurricular clubs. We principally target children who may experience barriers to accessing Higher Education, including low socioeconomic status, being the first in their family to attend university, and disability (including Special Educational Needs). The Minecraft platform encourages teamwork and makes science learning accessible and entertaining for children, irrespective of background. We employ a flexible approach
DATE:
TEAM MEMBERS: Laura Hobbs Carly Stevens Jackie Hartley Calum Hartley
resource research Media and Technology
The Year in ISE is a slidedoc designed to track and characterize field growth, change and impact, important publications, and current topics in ISE in 2018. Use it to inform new strategies, find potential collaborators for your projects, and support proposal development. Scope This slidedoc highlights a selection of developments and resources in 2018 that were notable and potentially useful for the informal STEM education field. It is not intended to be comprehensive or exhaustive, nor to provide endorsement. To manage the scope and length, we have focused on meta analyses, consensus reports
DATE:
TEAM MEMBERS: James Bell
resource project Media and Technology
Education stakeholders from advocates to developers are increasingly recognizing the potential of science games in advancing student academic motivation for and interest in science and science careers. To maximize this potential, the project will use science games (e.g. Land Science, River City, and EcoMUVE), shown to be enjoyable to students and proven to promote student learning in science at the middle school level. Through a two-phase process, games will be used as vehicles for learning about ways to change how students think about science and potentially STEM careers. The goal of the intervention is to explore which processes and design features of science games will actually help students move beyond a temporary identity of being a scientist or engineer (as portrayed while playing the game) to one where students began to see themselves in real STEM careers. Students' participation will be guided by teams of teachers, faculty members, and graduate students from Drexel University and a local school. All science students attending the local inner city middle school in Philadelphia, PA, will participate in the intervention.

Using an exploratory mixed-method design, the first two years of the project will focus on exploring, characterizing, coding, and analyzing data sets from three large games designed to help students think about possible careers in science. During year 3, the project will integrate lessons learned from the first two years into the existing middle school science curriculum to engage students in a one-year intervention using PCaRD (Play Curricular activity Reflection Discussion). During the intervention, the PI will work with experts from Drexel University and a local school to collect data on the design features of Land Science to capture identity change in the science identity of the participating students. Throughout the course of year 3, the PI will observe, video, interview, survey, and use written tasks to uncover if the Land Science game is influencing students' identity in any way (from a temporary to a long-term perspective about being a scientist or engineer). Data collected during three specified waves during the intervention will be compared to analyses of existing logged data through collaborations with researchers at Harvard University and the University of Wisconsin-Madison. These comparisons will focus on similar middle-aged science students who used the same gaming environments as the students involved in this study. However, the researcher will intentionally look for characteristics related to motivation, science knowledge, and science identity change.

This project will integrate research and education to investigate learning as a process of change in student science identity within situated environmental contexts of digital science gameplay around curricular and learning activities. This integrated approach will allow the researcher to explore how gaming is inextricably linked to the student as an individual while involved in the learning of domain specific content in science. The collaboration among major university and school partners; the expertise of the researcher in educational psychology, educational technology, and science games; and the project's advisory board makes this a real-life opportunity for the researcher to use information that naturally exists in games to advance knowledge in the field about the value of gaming to changing students' science identities. It also responds to reports by the National Research Council committee on science learning and computer games, which identifies games as having the potential to catalyze new approaches to science learning.
DATE: -
TEAM MEMBERS: Aroutis Foster
resource project Media and Technology
Purpose: This project team will fully develop and test SuperChemVR, a virtual environment integrated within a Virtual Reality (VR) headset for an immersive exploration of a chemistry lab. While chemistry labs offer the benefits of hands-on experimentation to help students learn abstract concepts, they are costly to maintain, supervise, and pose safety risks. Virtual chemistry labs for computers and tablets allow students to explore chemistry safely with unlimited resources, and provide immediate feedback and automated assessments, but these "point-and click" experiences are not immersive or hands-on. Immersive VR allows users to fully experience an interactive, 3-Dimensional 360-degree environment.

Project Activities: During Phase I, (completed in 2016), the team developed a prototype of SuperChemVR, including a virtual chemistry lab environment within which students immerse themselves while wearing a VR headset. At the end of Phase I, researchers completed a pilot study with 54 students and three teachers. Results demonstrated that the hardware and software prototype operated as intended, teachers were able to integrate it within the classroom environment, and students were engaged while using the prototype. In Phase II, the team will add content modules and a gameplay narrative to the platform, build the automated feedback mechanism, strengthen the back-end management system, and build out the teacher reporting dashboard. After development is complete, the research team will conduct a larger pilot study to assess the feasibility and usability, fidelity of implementation, and the promise of the SuperChemVR for improving student learning in chemistry. The study will include 10 high school chemistry classrooms, half randomly assigned to use SuperChemVR and half to follow business-as-usual procedures. Researchers will compare pre-and-post scores of student's chemistry learning.

Product: SuperChemVR is a room-scale VR lab and learning game for high school chemistry students. While wearing a VR headset, students will be immersed in a simulated chemistry 3D-environment where they will be challenged to acquire basic lab and safety skills. Through actual, accurate measurement and experimentation, students will improve their understanding of chemistry practices as they learn using science to solve problems. VR will enhance students' chemistry experience by providing instant cleanup, access to infinite resources, and observations at exponentially larger and smaller scales while simulating accurate physical actions in a safe environment. In the game component of the intervention, students will participate in an outer-space adventure that takes place on a derelict spaceship requiring players to use chemistry to survive until they can be rescued. SuperChem VR will be used in the classroom by teachers as a demonstration tool, will provide implementation supports, and will provide teachers with reports on student performance.
DATE: -
TEAM MEMBERS: Jesse Schell
resource project Media and Technology
Purpose: This project team will fully develop and test Cyberchase Fractions Quest, a web-based mathematics game for students in grade 3 and 4. Research shows that inadequate understanding of fractions can persist from early grades through higher education, and that success in fractions predicts future success in mathematics and other STEM subjects.

Project Activities: During Phase I (completed in 2016), the team developed a prototype of Cyberchase Fractions Quest, including an interactive number line game with four levels of challenges, and a tool to scaffold learning through hints and provide encouragement as students progress. At the end of Phase I, the research team conducted a pilot study over one week with 60 grade 4 students, half of whom were randomly assigned to use the prototype and half assigned to paper-based fractions activities. Results revealed that the prototype functioned as intended, that students were engaged during gameplay, and that from pre- to post-test, students using the prototype increased significantly in their knowledge of number line problems compared to the control group. In Phase II, the team will finalize the design, artwork, and animation, the formative and summative assessment component, and learning management system. After development is complete, the researchers will carry out a pilot study to assess the usability and feasibility, fidelity of implementation, and promise of the game to improve student learning of fractions over a 5-week period. The study will include four classrooms of grade 3 students, two of which will be randomly assigned, to use the games to supplement in-class lessons while the others will use paper-based activities. The researchers will compare pre-and-post scores for student learning of fractions. The study will also track teacher implementation.

Product: The final product is Cyberchase Fractions Quest—a math game based on the storyline of PBS children's television series, Cyberchase. In the game, students in grades 3 and 4 will apply learning fractions within three contexts: areas and regions (such as shapes), sets (groups of objects), and on a number line. The game will identify specific areas where students struggle and will introduce challenges to support individualized learning. Similar to other popular game apps, student will receive immediate feedback from one to three stars based on how well they perform on each challenge as well as in-game rewards as they progress toward mastery. The game will include teacher resources for classroom implementation, and an educator dashboard presenting results.
DATE: -
TEAM MEMBERS: Gary Goldberger
resource project Media and Technology
Changes in household-level actions in the U.S. have the potential to reduce rates of greenhouse gas (GHG) emissions and climate change by reducing consumption of food, energy and water (FEW). This project will identify potential interventions for reducing household FEW consumption, test options in participating households in two communities, and collect data to develop new environmental impact models. It will also identify household consumption behavior and cost-effective interventions to reduce FEW resource use. Research insights can be applied to increase the well-being of individuals at the household level, improve FEW resource security, reduce climate-related risks, and increase economic competitiveness of the U.S. The project will recruit, train, and graduate more than 20 students and early-career scientists from underrepresented groups. Students will be eligible to participate in exchanges to conduct interdisciplinary research with collaborators in the Netherlands, a highly industrialized nation that uses 20% less energy and water per person than the U.S.

This study uses an interdisciplinary approach to investigate methods for reducing household FEW consumption and associated direct and indirect environmental impacts, including GHG emissions and water resources depletion. The approach includes: 1) interactive role-playing activities and qualitative interviews with homeowners; 2) a survey of households to examine existing attitudes and behaviors related to FEW consumption, as well as possible approaches and barriers to reduce consumption; and 3) experimental research in residential households in two case-study communities, selected to be representative of U.S. suburban households and appropriate for comparative experiments. These studies will iteratively examine approaches for reducing household FEW consumption, test possible intervention strategies, and provide data for developing systems models to quantify impacts of household FEW resource flows and emissions. A FEW consumption-based life cycle assessment (LCA) model will be developed to provide accurate information for household decision making and design of intervention strategies. The LCA model will include the first known farm-to-fork representation of household food consumption impacts, spatially explicit inventories of food waste and water withdrawals, and a model of multi-level price responsiveness in the electricity sector. By translating FEW consumption impacts, results will identify "hot spots" and cost-effective household interventions for reducing ecological footprints. Applying a set of climate and technology scenarios in the LCA model will provide additional insights on potential benefits of technology adoption for informing policymaking. The environmental impact models, household consumption tracking tool, and role-playing software developed in this research will be general purpose and publicly available at the end of the project to inform future education, research and outreach activities.
DATE: -
TEAM MEMBERS: David Watkins Buyung Agusdinata Chelsea Schelly Rachael Shwom Jenni-Louise Evans