Skip to main content

Community Repository Search Results

resource project Public Programs
This is an NSF Postdoctoral Research Fellowship in Biology, under the program Broadening Participation of Groups Under-represented in Biology. The fellow, Robert Habig, is conducting research and receiving training that is increasing the participation of groups underrepresented in biology. The fellow is being mentored by David Lahti at Queens College, City University of New York. The goal of the fellow's project is to perform a comparative evolutionary analysis of nest construction in the weaverbirds (Ploceus spp.). The evolutionary history of behavior can be nearly intractable and resistant to quantitative analysis. One strategy for illuminating our understanding of behavioral evolution is to conduct comparative studies of animal architectures, such as nests. Unlike behaviors themselves, nests persist through time, and have structures that can be disassociated into several quantitative features, which permits easy and comparable measurements and allows scientists to address questions about evolutionary history and functional relevance. The fellow's research addresses two major questions: (1) How do patterns of nest construction vary within and between species? (2) How do interrelated evolutionary processes shape variation in nest structure? This project is important for advancing foundational scientific knowledge, and will be the first study of weavers incorporating both molecular data and nest morphology to better understand the evolutionary underpinnings of a complex behavioral process. The fellow is also broadening participation in science by mentoring students underrepresented in biology.

The Fellow will reconstruct the evolution of nest construction in Ploceus weaverbirds incorporating advanced phylogenetic and morphological techniques including bioinformatics, computer modeling, X-ray computed tomography, and image processing. The Fellow will also conduct fieldwork in two hotspots of weaverbird diversity, the Awash Valley in Ethiopia and the Limpopo Province of South Africa, and collect behavioral data (e.g. rates of predation and brood parasitism; mating and parental behavior) and morphological data (e.g. nest structure) to test hypotheses of how distinct types of evolutionary selection shape the evolution of nest construction. The proposed comparative study can thus address questions such as how rapidly certain nest structural features evolve, which features are ancestral versus derived, which tend to exhibit phylogenetic signal, and which evolve in response to environmental features. The Fellow is receiving training in three-dimensional morphological analyses, phylogenetic tree construction, bioinformatics, computer modeling, and mentoring skills. The plan to broaden participation includes (1) recruitment, training, and mentoring of Queens College students from underrepresented groups in biology; (2) designing an evolutionary biology curriculum that ties in the research of the fellowship; (3) teaching an evolutionary biology class to underrepresented middle and high school students at the American Museum of Natural History; and (4) facilitating a research team for middle school and high school students.
DATE: -
TEAM MEMBERS: Bobby Habig
resource research Media and Technology
During the course of our ongoing collaboration with KQED, my fellow academic researchers and I have learned that science media professionals are especially interested in improving strategies for headline design, with the goal of increasing audience engagement. Their intuitions about the importance of headlines are supported by research findings. At least when browsing on social media platforms, media consumers often make decisions about whether to engage with stories based only off of the headline. Moreover, headlines influence the way people interpret the story and the impressions they form
DATE:
TEAM MEMBERS: Sue Ellen McCann Sevda Eris Asheley Landrum Sarah Mohamad
resource research Media and Technology
For an award-winning, public media YouTube science and nature series like KQED’s Deep Look, which delights its audiences by exploring unusual, tiny animals and plants up-close in ultra-high definition, how do you quantify and assess the value of different kinds of behind-the-scenes content when your original short videos are so fantastic at engaging your target audience? Below is a summary of the key findings of the behind-the-scenes survey. Attached is the full report. 1. The measurable benefits of appending a fully produced behind-the-scenes video to a Deep Look episode appear to
DATE:
TEAM MEMBERS: Sue Ellen McCann Sevda Eris Asheley Landrum Sarah Mohamad Othello Richards
resource research Media and Technology
The KQED digital video team explored why they have gender disparity in viewership of their YouTube series Deep Look. For almost every one of our episodes, the percentage of women who watch is considerably lower than the percentage of men, a disparity that also happens on other science shows distributed by PBSDS. On average, about 70% of Deep Look’s YouTube audience is male and only 30% is female. Our audience’s disparity is even more pronounced than that of YouTube’s average audience, which is 60% male. Below is a summary of the survey’s findings. You can read the full report, called “A
DATE:
TEAM MEMBERS: Sue Ellen McCann Sevda Eris Asheley Landrum Sarah Mohamad Dan Kahan Gabriela Quiros
resource project Public Programs
This pilot and feasibility project will explore whether participation in informal science initiatives like citizen science, which is a form of Public Participation in Scientific Research, can foster or enhance participant attachment to the natural places participants investigate via these programs. The project also examines if participant attachment to place influences the development or application of critical thinking skills among adult learners. Critical thinking skills and the factors that enhance critical thinking skills are important areas of inquiry within the informal STEM learning community. Existing scholarship suggests that three components may be linked: (1) feelings of connection to specific places, (2) intentional exploration and investigation of those places (in this case via citizen science), and (3) understanding of complex socio-ecological systems, which is predicated on critical thinking skills ability. However, the degree to which these aspects are related to each other, the scale at which they occur (local to global), and the specific dimensions of place connection or informal science experiences implicated is not known. Working with the Coastal Observation and Seabird Survey Team (COASST) citizen science program, this project advances collaboration among experts from disparate fields to examine if and how citizen science contributes to increases in connection to place and higher-order critical thinking skills among participants and the potential links between those hypothesized outcomes. The ultimate goal of the project is to inform design of Public Participation in Scientific Research programming that optimizes participant learning, interest, and retention; produces societal outcomes like critical thinking in support of science literacy; and creates high quality data of the scale and grain needed to address questions and issues across the basic-applied science continuum.

This research focuses on the degree to which Public Participation in Scientific Research, specifically citizen science, may foster the presence or intensity of place attachment felt by participants for the sites and settings investigated through these programs and to what extent place attachment may be linked to higher order critical thinking skills among adult learners. A three-pronged mixed-methods research strategy will include: (1) a re-analysis of existing survey and interview data for markers of three-dimensional (personal, social, natural) place attachment as well as critical thinking skills and dispositions; (2) an assessment survey to test for the presence and intensity of place attachment and critical thinking skills; and (3) in-depth interviews to better understand the qualitative nature and development of place attachment and critical thinking skills in a citizen science context. The survey and interview sample will be drawn from participants in the COASST citizen science program and will be stratified into four groups as a function of time engaged in the program, including new, novice, and long-term participants. An independent external advisory board and a committee of visitors comprised of experts in informal science, education, and sense of place will critique and help guide this work. Results are expected to reveal important factors that impact the learning and behavioral outcomes of informal STEM initiatives by probing questions about the essential experiences, exposures, and COASST program components that facilitate deeper critical thinking skills and place attachment. Synthesizing theoretical frameworks from the fields of geography, science education, and educational psychology while testing a unique methodological approach to best measure critical thinking skills and place attachment in an informal citizen science setting will enhance knowledge-building among research and practitioner communities.

In a globalized and increasingly technologically complex world, the ability of citizens to interrogate and interpret scientific evidence, views, and values is critical. That is, scientific literacy is essential for the maintenance of robust and healthy economic, social, and environmental systems in the twenty-first century. Informal science learning fills an important gap in national educational efforts to cultivate a scientifically literate populace as research suggests that formal science training is not always capable of fostering the type of higher order critical thinking skills that undergird such scientific competency. This project aims to strengthen infrastructure and build capacity among informal science practitioners by clarifying whether specific aspects and forms of Public Participation in Scientific Research, especially those relating to people-place connections, are implicated in the development and/or application of critical thinking skills in STEM settings. This effort may expand opportunities to strengthen informal science learning program outcomes, including the cultivation of numerous 21st century skills like information literacy and social skills like conflict management. Through a greater understanding of the individual components that shape informal learning experiences and outcomes, this project also has the potential to support the broadening of participation in STEM fields by providing the groundwork for further research on whether or not underrepresented or traditionally marginalized groups of people experience and/or relate differently to both the "places" most common in citizen science and the practice of informal science programming itself.
DATE: -
TEAM MEMBERS: Julia Parrish Benjamin Haywood
resource project Media and Technology
It is estimated that over 95% of all school children across the country are out of the classroom due to social distancing mandates in response to the COVID-19 pandemic. Almost overnight, families have had to develop and support new practices for learning at home as districts scramble to meet the academic, social and emotional needs of their communities. It is essential to collect data now to develop a deeper understanding of how schools and families are adapting to these changes and will continue to do so in coming weeks/months - the troubles they encounter, and the solutions they generate. Retrospective accounts may mask critical features of what was experienced, minimizing the country’s capacity to conceptualize and build more robust, equitable and transformative learning ecologies for the future. Emphasizing an equity approach to solution development, this research will document how families engage in creative practices to generate powerful learning based on local needs, values, contexts, and histories in this present crisis. It will address the following questions: (1) What resources are schools providing and how are parents navigating and extending these resources to sustain their child’s learning? (2) How are families exploring science and math concepts related to the pandemic? (3) How are parents and families learning to adapt (e.g. communication with teachers; broader social networks) and what challenges do they face (e.g. subscription costs; reliable Internet)? (4) How are digital resources for STEM, curated by the research team, utilized for learning?

Emergency school closures are exposing significant gaps in access to the Internet and communication devices, and the capacity of parents/caregivers and communities to capitalize on technology to sustain health-relevant learning in a time of crisis. This project will use a novel, remote-diary tool based on a smartphone-enabled data collection platform, to reach families across the country. Mobile-phone-enabled remote diary tools make it possible to reach families who are under-connected, not just those with robust technical infrastructure. The data collected will lay the groundwork for creating new socio-technical support systems informed by diverse families’ experiences, as the crisis unfolds. Approximately 200 parents with school age children (early and upper elementary grades) living at home will be recruited. This study and a subsequent virtual workshop with other researchers who are also using remote methods to study learning will help establish a broader research agenda to specify the conditions under which socio-technical systems productively augment a family’s capacity to innovate and learn when traditional co-located school settings disappear. It will advance our understanding of how human learning adapts to unexpectedly changed learning environments. This study draws on advances in remote data collection and new analytical tools for innovation in research design.
DATE: -
TEAM MEMBERS: Brigid Barron
resource project Media and Technology
Three-dimensional digital models are increasingly prevalent in preserving tangible and intangible aspects of Indigenous material heritage. Yet, there are no comprehensive, clearly laid-out best practices that can guide researchers, Indigenous communities, and museum personnel in designing ethically sound and socially engaged 3D heritage preservation projects. The use of 3D technologies for heritage preservation and providing public access to digital 3D collections is well-established in the European context. While there have been several robust efforts on digitizing European national heritage, in the U.S. context, the focus often involves work with Indigenous heritage, instantly placing 3D projects into a post-colonial research paradigm with a complex set of ethical ramifications. This research examines emerging thoughts from the European context and connects them with best practices in digital Indigenous data management to identify practices that contribute to cultures of academic integrity that are inclusive of all stakeholder voices. This work fosters ethical cultures of STEM through the development of a comprehensive Responsible Conduct of Research guiding document that can be adapted to address culture-specific Indigenous perspectives as well as project-specific challenges in future 3D heritage preservation endeavors.

Project goals are accomplished through workshops and virtual collaborations that bring together researchers, Indigenous community members, and heritage preservation professionals with previous experience in the responsible management, protection, and sharing of Indigenous digital data and the use of 3D technology for heritage preservation. The collaboratively produced guidelines outline ethical considerations that can be used in developing: 1) partnerships with origin/descendant communities, 2) institution- and collection-specific museum policies on using 3D technology, 3) Tribal policies for culturally appropriate use of 3D technologies, and 4) training material and curriculum that integrates with other research compliance regulations pertaining to heritage preservation. The project explores the questions that have emerged through previous experiences using 3D technologies to preserve Indigenous ancestral heritage. These questions include the factors contributing to developing ethically sound 3D heritage preservation projects; the practices useful in 3D projects to foster a culture of integrity that equally engages academic and Indigenous perspectives; consideration for what constitutes Responsible Conduct of Research in using 3D technologies to preserve Indigenous cultural heritage; and addressing practice-based questions that contribute to understanding ethical challenges in digitally preserving and presenting Indigenous heritage. The project situates 3D modeling and heritage representation as part of the larger discourse on decolonizing core methodologies in museum management and anthropological collection practices. Results from this work can be adapted to training future researchers and digital heritage management professionals and creating meaningful partnerships in heritage documentation. This research cultivates cultures of academic integrity by informing heritage management policy on the critical importance of heritage ethics for the creation and management of 3D digitization projects involving Indigenous collections. This award is funded by the Directorate of Geosciences and the Directorate of Education and Human Resources.
DATE: -
TEAM MEMBERS: Medea Csoba-DeHass Lori Collins
resource project Media and Technology
Wireless radio communications, such as Wi-Fi, transmit public and private data from one device to another, including cell phones, computers, medical equipment, satellites, space rockets, and air traffic control. Despite their critical role and prevalence, many people are unfamiliar with radio waves, how they are generated and interact with their surroundings, and why they are the basis of modern communication and navigation. This topic is not only increasingly relevant to the technological lives of today’s youth and public, it is critical to the National Science Foundation’s Industries of the Future activities, particularly in advancing wireless education and workforce development. In this project, STEM professionals from academia, industry and informal education will join forces to design, evaluate, and launch digital apps, a craft-based toolkit, activity guides, and mobile online professional learning, all of which will be easily accessed and flexibly adapted by informal educators to engage youth and the public about radio frequency communications. Experiences will include embodied activities, such as physically linking arms to create and explore longitudinal and transverse waves; mobile experiences, such as augmented reality explorations of Wi-Fi signals or collaborative signal jamming simulations; and technological exploration, such as sending and receiving encrypted messages.

BSCS Science Learning, Georgia Tech, and the Children’s Creativity Museum (CCM) with National Informal STEM Education Network (NISE Net) museum partners will create pedagogical activity designs, digital apps, and a mobile online professional learning platform. The project features a rigorous and multipronged research and development approach that builds on prior learning sciences studies to advance a learning design framework for nimble, mobile informal education, while incorporating the best aspects of hands-on learning. This project is testing two related hypotheses: 1) a mobile strategy can be effective for supporting just-in-time informal education of a highly technical, scientific topic, and 2) a mobile suite of resources, including professional learning, can be used to teach informal educators, youth, and the general public about radio frequency communications. Data sources include pre- and post- surveys, interviews, and focus groups with a wide array of educators and learners.

A front-end study will identify gaps in public understanding and perceptions specific to radio frequency communications, and serve as a baseline for components of the summative research. Iterative formative evaluation will incorporate participatory co-design processes with youth and informal educators. These processes will support materials that are age-appropriate and culturally responsive to not only youth, with an emphasis on Latinx youth, but also informal educators and the broader public. Summative evaluation will examine the impact of the mobile suite of resources on informal educators’ learning, facilitation confidence and intentions to continue to incorporate the project resources into their practice. The preparation of educators in supporting public understanding of highly technological STEM topics can be an effective way for supporting just-in-time public engagement and interests in related careers. Data from youth and museum visitors will examine changes to interest, science self-efficacy, content knowledge, and STEM-related career interest. If successful, this design approach may influence how mobile resources are designed and organized effectively to impact future informal education on similarly important technology-rich topics. All materials will be released under Creative Commons licenses allowing for widespread sharing and remixing; research and design findings will be published in academic, industry, and practitioner journals.

This project is co-funded by two NSF programs: The Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource research Public Programs
Reframing engineering activities to emphasize the needs of others has the potential to strengthen engineering practices like problem scoping, while also providing more inclusive and socially relevant entry points into engineering problems. In a three-year design-based research project, we developed novel strategies for adding narratives to engineering activities to deepen girls’ engagement in engineering practices by evoking empathy for the users of their designs. In this article, we describe a set of hands-on engineering activities developed through iterative development and testing with 190
DATE:
resource research Media and Technology
In order for children to identify with STEM fields, it is essential that they feel there is a place within STEM for individuals “like them.” Unfortunately, this identification is difficult for Hispanic/Latine youths because of lack of representation and even stereotyping that is widespread in educational institutions in the United States. Some research has been done, though, that suggests there is promise in understanding the ways that parents help children see themselves as “STEM people” in spite of these obstacles. Building on this work, we present some of our own research on the experiences
DATE:
TEAM MEMBERS: Remy Dou Heidi Cian
resource research Public Programs
Presentation slides from the session "Social Science Research Collaboration: Advance the field and your Organization" shared at the 2020 AZA Annual Conference (Virtual).
DATE:
TEAM MEMBERS: Kelly Riedinger
resource project Media and Technology
Informal learning environments offer a range of educational observations. Lately, many venues have adopted livestreaming and digital archiving, both as additional access for a wider offsite audience and as alternative ways to engage the onsite audience. Students can observe animals and plants from a different continent through a live camera feed, or they can watch an online recording of a science experiment even if they missed the live demonstration. However, livestreamed or archived observations remain a mostly passive experience, offering limited interactions beyond watching the videos. One way to create more active learning opportunities from these observations is to use sensors such as thermal cameras as additional streaming devices, which transmit real-time images and data that not only reveal more about what is being observed, but also allow the audience to ask deeper questions, find answers by interacting with the data, apply science knowledge in a relevant context, and become an active participant in scientific inquiry.

This project has created Telelab, a cloud platform for livestreaming and archiving interactive observations to promote citizen science. Powered by the Internet of things (IoT), Telelab allows informal science educators to present exhibits, living organisms or ecosystems through the use of sensors and actuators. Audiences both onsite and offsite can visualize biological processes in situ, such as thermoregulation, thermogenesis, metabolism, etc., or they can investigate physics and chemistry experiments by analyzing experimental data in combination with the video stream.

This work is funded by The Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to and evidence-based understanding of the design and development of STEM learning opportunities for the public in informal environments; provide multiple pathways for broadening access to and engagement in STEM learning experiences; advance innovative research on and assessment of STEM learning in informal environments; and engage the public of all ages in learning STEM in informal environments.
DATE: -
TEAM MEMBERS: Charles Xie Shannon Sung Rundong Jiang