Skip to main content

Community Repository Search Results

resource project Exhibitions
RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
DATE: -
TEAM MEMBERS:
resource research Media and Technology
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Sherry Hsi Darrell Porcello Hyun Joo
resource project Media and Technology
Wireless radio communications, such as Wi-Fi, transmit public and private data from one device to another, including cell phones, computers, medical equipment, satellites, space rockets, and air traffic control. Despite their critical role and prevalence, many people are unfamiliar with radio waves, how they are generated and interact with their surroundings, and why they are the basis of modern communication and navigation. This topic is not only increasingly relevant to the technological lives of today’s youth and public, it is critical to the National Science Foundation’s Industries of the Future activities, particularly in advancing wireless education and workforce development. In this project, STEM professionals from academia, industry and informal education will join forces to design, evaluate, and launch digital apps, a craft-based toolkit, activity guides, and mobile online professional learning, all of which will be easily accessed and flexibly adapted by informal educators to engage youth and the public about radio frequency communications. Experiences will include embodied activities, such as physically linking arms to create and explore longitudinal and transverse waves; mobile experiences, such as augmented reality explorations of Wi-Fi signals or collaborative signal jamming simulations; and technological exploration, such as sending and receiving encrypted messages.

BSCS Science Learning, Georgia Tech, and the Children’s Creativity Museum (CCM) with National Informal STEM Education Network (NISE Net) museum partners will create pedagogical activity designs, digital apps, and a mobile online professional learning platform. The project features a rigorous and multipronged research and development approach that builds on prior learning sciences studies to advance a learning design framework for nimble, mobile informal education, while incorporating the best aspects of hands-on learning. This project is testing two related hypotheses: 1) a mobile strategy can be effective for supporting just-in-time informal education of a highly technical, scientific topic, and 2) a mobile suite of resources, including professional learning, can be used to teach informal educators, youth, and the general public about radio frequency communications. Data sources include pre- and post- surveys, interviews, and focus groups with a wide array of educators and learners.

A front-end study will identify gaps in public understanding and perceptions specific to radio frequency communications, and serve as a baseline for components of the summative research. Iterative formative evaluation will incorporate participatory co-design processes with youth and informal educators. These processes will support materials that are age-appropriate and culturally responsive to not only youth, with an emphasis on Latinx youth, but also informal educators and the broader public. Summative evaluation will examine the impact of the mobile suite of resources on informal educators’ learning, facilitation confidence and intentions to continue to incorporate the project resources into their practice. The preparation of educators in supporting public understanding of highly technological STEM topics can be an effective way for supporting just-in-time public engagement and interests in related careers. Data from youth and museum visitors will examine changes to interest, science self-efficacy, content knowledge, and STEM-related career interest. If successful, this design approach may influence how mobile resources are designed and organized effectively to impact future informal education on similarly important technology-rich topics. All materials will be released under Creative Commons licenses allowing for widespread sharing and remixing; research and design findings will be published in academic, industry, and practitioner journals.

This project is co-funded by two NSF programs: The Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Media and Technology
This RAPID was submitted in response to the NSF Dear Colleague letter related to the COVID-19 pandemic. This award is made by the AISL program in the Division of Research on Learning, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. The public must be made aware in a clear, responsible way about the role of science to help bring this pandemic under control and prevent future outbreaks. This project will allow the NewsHour to go beyond their daily reporting of the medical information about the pandemic, to inform the public about the difference scientific research/ research conducted by scientists and medical professionals can make in attacking such a dire threat. The PBS NewsHour has the capability to quickly mobilize its science journalists and national distribution infrastructure to produce at least six broadcast segments and additional digital materials reporting on this on-going scientific work. They will interview scientists, researchers and experts in genomic analysis, computer tracking, vaccine production, and social epidemiology showing what they are doing to test, treat, track and stop the spread of COVID-19, to create vaccines that may prevent further transmission, and to measure the social impact of the disease. These segments will be broadcast nationwide on local PBS stations and distributed on their website, YouTube, and social media channels. Viewership of the NewsHour is extensive reaching 2.5 million people nightly via broadcast and almost 33 million YouTube views per quarter. During a recent quarter, they reached 72.6 million on Facebook and garnered 86.8 million Twitter impressions.

The research team, Knology, will conduct a study to assess 1) where US adults are primarily getting information about COVID-19; 2) their perception of personal and public responsibility; 3) behaviors they have taken and/or plan to take, and when; 4) their social values. Knology will develop a survey instrument with adopted items and modules used in prior collaborations to develop a baseline understanding of the relationship between news consumption and attitudes about COVID-19 risk. The survey will be hosted using Qualtrics. Survey data will be gathered from a representative sample of US adults (N = 1000) recruited using the online software system, Prolific. A recent PBS NewsHour/NPR/Marist poll will be used as a baseline. Once potentially identifying information like demographics are aggregated, these formative data and topline results will be shared openly through the Knology website to support other researchers and journalists.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Patti Parson
resource research Media and Technology
Genetic Modification (GM) has been a topic of public debates during the 1990s and 2000s. In this paper we explore the relative importance of two hypothesized explanations for these controversies: (i) people's general attitude toward science and technology and (ii) their trust in governance, in GM actors, and in GM regulations, in explaining the Dutch public's Attitude toward GM applications, and in addition to that, the public's GM Information seeking behaviour. This will be conducted through the application of representative survey methodology. The results indicate that Attitudes toward GM
DATE:
TEAM MEMBERS: Lucien Hanssen Anne Dijkstra Susanne Sleenhoff Lynn Frewer Jan Gutterling
resource evaluation Media and Technology
YR Media (formerly Youth Radio) engages young people in digital media production that combines journalism, design, data, and coding. With support from the National Science Foundation (NSF), YR Media collaborated with the Massachusetts Institute of Technology’s App Inventor to launch WAVES — A STEM-Powered Youth News Network for the Nation. This three-year initiative expanded YR Media’s model of informal STEM education through the launch of a national platform that utilizes STEM-powered tools to create and distribute news stories, mobile apps, and digital interactives. Rockman et al, an
DATE:
resource evaluation Media and Technology
AHA! Island is a new project that uses animation, live-action videos, and hands-on activities to support joint engagement of children and caregivers around computational thinking concepts and practices. This research is intended to examine the extent to which the prototyped media and activity sets support the project’s learning goals. Education Development Center (EDC), WGBH’s research partner for the project, conducted a small formative study with 16 English-speaking families (children and their caregivers) to test out these media and activity set prototypes. During the in-person video
DATE:
TEAM MEMBERS: Marisa Wolsky Heather Lavigne Jessica Andrews Leslie Cuellar
resource research Media and Technology
This article examines certain guiding tenets of science journalism in the era of big data by focusing on its engagement with citizen science. Having placed citizen science in historical context, it highlights early interventions intended to help establish the basis for an alternative epistemological ethos recognising the scientist as citizen and the citizen as scientist. Next, the article assesses further implications for science journalism by examining the challenges posed by big data in the realm of citizen science. Pertinent issues include potential risks associated with data quality
DATE:
TEAM MEMBERS: Stuart Allan Joanna Redden
resource research Media and Technology
SciGirls Strategies is a National Science Foundation–funded project led by Twin Cities PBS (TPT) in partnership with St. Catherine University, the National Girls Collaborative, and XSci (The Experiential Science Education Research Collaborative) at the University of Colorado Boulder’s Center for STEM Learning. This three-year initiative aims to increase the number of high school girls recruited to and retained in fields where females are traditionally underrepresented: technical science, engineering, technology, and math (STEM) pathways. We seek to accomplish this goal by providing career and
DATE:
TEAM MEMBERS: Rita Karl Bradley McLain Alicia Santiago
resource project Media and Technology
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This media and technology project will scale up Youth Radio's proven model of STEM education through youth-driven multimedia journalism and related app development using the MIT App Inventor. A new Youth News Network (YNN) will implement a nationwide feeder system of youth reporters and educators using the previously developed and proven STEM curriculum. Previous research and evaluation has demonstrated that this model can engage underserved youth and put them in leadership positions in technological innovation. Key deliverables include the YNN STEM Desk that will produce 15-20 STEM-related stories each year; bootcamps (1-3 day workshops) training youth around the country focusing on app development and media links; and new toolkits providing resources to help with app development, data analysis and other STEM-specific skills. Project partners include MIT Media Lab, National Public Radio, Best Buy's Teen Tech Centers, National Writing Project, Computer Clubhouses, and PBS Learning Media among others.

Over the previous eight years, research and evaluation findings had been used to refine the project. These data served as the foundation for this scale-up project. The research conducted by the investigator and the Scholar-in-Residence in this scale-up uses an embedded ethnographic approach that combines field notes, recorded meetings and discussions, media artifacts, etc.--data that is transcribed and coded for indicators of STEM learning and critical computational literacy. The external summative evaluation will build on prior evidence regarding how this unique model engages youth and impacts their skills in STEM related media and technology.
DATE: -
TEAM MEMBERS: Elisabeth Soep Ellin O'Leary Harold Abelson
resource project Media and Technology
This project will capitalize on the power of story to teach foundational computational thinking (CT) concepts through the creation of animated and live-action videos, paired with joint media engagement activities, for preschool children and their parents. Exposure at a young age to CT is critical for preparing all students to engage with the technologies that have become central to nearly every occupation. But despite this recognized need, there are few, if any, resources that (1) introduce CT to young children; (2) define the scope of what should be taught; and (3) provide evidence-based research on effective strategies for bringing CT to a preschool audience. To meet these needs, WGBH and Education Development Center/Center for Children and Technology (EDC/CCT) will utilize an iterative research and design process to create animated and live-action videos paired with joint media engagement activities for parents and preschool children, titled "Monkeying Around". Animated videos will model for children how to direct their curiosity into a focused exploration of the problem-solving process. Live-action videos will feature real kids and their parents and will further illustrate how helpful CT can be for problem solving. With their distinctive visual humor and captivating storytelling, the videos will be designed to entice parents to watch alongside their children. This is important since parents will play an important role in guiding them in explorations that support their CT learning. To further promote joint media engagement, hands-on activities will accompany the videos. Following the creation of these resources, an experimental impact study will be conducted to capture evidence as to if and how these resources encourage the development of young children's computational thinking, and to assess parents' comfort and interest in the subject. Concurrent with this design-based research process, the project will build on the infrastructure of state systems of early education and care (which have been awarded Race to the Top grants) and local public television stations to design and develop an outreach initiative to reach parents. Additional partners--National Center for Women & Information Technology, Code in Schools, and code.org (all of whom are all dedicated to promoting CT)--will further help bring this work to a national audience.

Can parent/child engagement with digital media and hands-on activities improve children's early learning of computational thinking? To answer this question, WGBH and EDC/CCT are collaborating on a design-based research process with children and their parents to create Monkeying Around successive interactions. The overarching goal of this mixed-methods research effort is to generate evidence that supports the development of recommendations around the curricular, instructional, and contextual factors that support or impede children's acquisition of CT as a result of digital media viewing and hands-on engagement. Moving through cycles of implementation, observation, analysis, and revision over the course of three years, EDC/CCT researchers will work closely with families and WGBH's development team to determine how children learn the fundamentals of CT, how certain learning tasks can demonstrate what children understand, how to stimulate interest in hands-on activities, and the necessary scaffolds to support parental involvement in the development of children's CT. Each phase of the research will provide rich feedback to inform the next cycle of content development and will include: Phase 1: the formulation of three learning blueprints (for algorithmic thinking, sequencing, and patterns); Phase 2: the development of a cohesive set of learning tasks to provide evidence of student learning, as well as the production of a prototype of the digital media and parent/child engagement resources (algorithmic thinking); Phase 3-Part A: pilot research on the prototype, revisions, production of two additional prototypes (sequencing and patterns); Phase 3-Part B: pilot research on the three prototypes and revisions; and Phase 4: production of 27 animated and live-action videos and 18 parent/child engagement activities and a study of their impact. Through this process, the project team will build broader knowledge about how to design developmentally appropriate resources promoting CT for preschool children and will generate data on how to stimulate interest in hands-on activities and the necessary scaffolds to support parental involvement in the development of children's CT. The entire project represents an enormous opportunity for WGBH and for the informal STEM media field to learn more about how media can facilitate informal CT learning in the preschool years and ways to broaden participation by building parents' capacity to support STEM learning. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Marisa Wolsky Heather Lavigne
resource project Media and Technology
This award supports the production of a longitudinal video documentary of the evolution of Advanced LIGO and will chronicle the most critical and exciting period in the history of gravitational wave science in the past 100 years. LIGO resumed the search for gravitational waves in 2015 with a newly upgraded detector and on September 14, 2015 detected gravitational waves for the first time, astounding not only the scientific community but the entire world. Using footage captured at critical periods between August 2015 and March 2016 during the discovery phase as well as new filming taking place over the next two years, the team will produce films which will impact at least hundreds of thousands of people and possibly many more than that. The goal is to educate, inspire, and motivate. Students at the high school and undergraduate levels may be more inspired to pursue STEM careers after watching scientific vignettes focusing on the exciting science and technology of Advanced LIGO. Scientific historians and sociologists will have the opportunity to use the hundreds of hours of available film clips as a video database to investigate in detail the discovery of gravitational waves as a case study of large scale collaborations ("Big Science"). Videos highlighting the cutting edge technological advances brought about by Advanced LIGO and their impacts on other fields of science and technology may prove effective for educating officials and policy makers on the benefits of fundamental science.

During the course of the project, a series of professionally made video shorts will be produced for the LIGO Laboratory and LSC for education and public outreach purposes through distribution on LIGO Laboratory, LSC web sites, and the LIGO YouTube Channel. Through an extensive series of film shoots, XPLR Productions will work with the LIGO Laboratory and the LIGO Scientific Collaboration (LSC) to capture key moments as LIGO scientists work to achieve Advanced LIGO's design sensitivity and carry out a series of observing runs over the next two years. The team will produce a series of video shorts explaining the important scientific and technological concepts and issues of Advanced LIGO by the scientific experts who create them. In the longer term, footage will used to produce either a feature length documentary film or a twelve-part series on television entitled 'LIGO' chronicling the discovery of gravitational waves and the exploration of exotic high-energy astrophysical phenomena such as colliding black holes. Intended for broad distribution through cinema or television, 'LIGO' will bring science to life for a wide audience.
DATE: -
TEAM MEMBERS: David Reitze