Skip to main content

Community Repository Search Results

resource evaluation Public Programs
Growing Beyond Earth (GBE) is Fairchild’s NASA-funded classroom science project designed to advance research on growing plants aboard spacecraft. As NASA looks toward a long term human presence beyond Earth orbit, there are specific science, technology, engineering, and math (STEM) challenges related to food production. GBE is addressing those challenges by expanding the diversity and quality of edible plants that can be grown in space. On Earth, GBE is also improving technologies for gardening in urban, indoor, and other resource-limited settings. GBE is unique in its focus on real
DATE:
TEAM MEMBERS: Marion Litzinger Catherine Raymond Carl Lewis Amy Padolf
resource project Public Programs
Biology has become a powerful and revolutionary technology, uniquely poised to transform and propel innovation in the near future. The skills, tools, and implications of using living systems to engineer innovative solutions to human health and global challenges, however, are still largely foreign and inaccessible to the general public. The life sciences need new ways of effectively engaging diverse audiences in these complex and powerful fields. Bio-Tinkering Playground will leverage a longtime partnership between the Stanford University Department of Genetics and The Tech Museum of Innovation to explore and develop one such powerful new approach.

The objective of Bio-Tinkering Playground is to create and test a groundbreaking type of museum space: a DIY community biology lab and bio-makerspace, complete with a unique repertoire of hands-on experiences. We will tackle the challenge of developing both open-ended bio-making activities and more scaffolded ones that, together, start to do for biology, biotech, and living systems what today’s makerspaces have done for engineering.

A combined Design Challenge Learning, making, and tinkering approach was chosen because of its demonstrated effectiveness at fostering confidence, creative capacity, and problem solving skills as well as engaging participants of diverse backgrounds. This educational model can potentially better keep pace with the emerging and quickly evolving landscape of biotech to better prepare young people for STEM careers and build the next generation of biotech and biomedical innovators.

Experience development will be conducted using an iterative design process that incorporates prototyping and formative evaluation to land on a final cohort of novel, highly-vetted Bio-Tinkering Playground experience. In the end, the project will generate a wealth of resources and learnings to share with the broader science education field. Thus, the impacts of our foundational work can extend well beyond the walls of The Tech as we enable other educators and public institutions around the world to replicate our model for engagement with biology.
DATE: -
TEAM MEMBERS: Anja Scholze
resource project Media and Technology
The New York Hall of Science (NYSCI) will develop, test, market, and disseminate an interactive graphic novel iBook that will use the interests of young people (ages 10–14) in animals and comics to engage them in learning about health and clinical research. Provisionally called “Transmission: Astonishing Tales of Human-Animal Diseases,” the project represents a new approach to engaging young people in biomedical science learning.

Graphic novels are one of the fastest growing categories in publishing and bookselling, and today, they are significantly more sophisticated than the comics that came before them. They are also enormously popular among young people. The proposed graphic novel iBook will focus on the diseases that humans and animals share and pass between them (sometimes to devastating consequences), from Ebola, bird flu, and West Nile disease to influenza, measles, and pneumonia. Moreover, like many other contemporary graphic novels, it will address a pressing issue of the day—amely, the growth of zoonotic and anthropozoonotic diseases.

The iBook will be developed in a digital, interactive format (a growing trend within the genre) and, like many graphic novel titles, will take a mystery and forensic crime approach to exploring its content. Ultimately, Transmission will become a national model for conveying biomedical understanding through the use of up-to-the-minute interactive iBook technologies and an engaging graphic novel format.
DATE: -
TEAM MEMBERS: martin weiss Geralyn Abinader
resource project Public Programs
This project will examine the characteristics and outcomes of a large sample of environmental education field trip programs for youth to elucidate program characteristics that most powerfully influence 21st century learning outcomes. Environmental education programs for youth, particularly day-long school trip programs, are popular and reside at the intersection of formal and informal STEM education. Such field trips provide opportunities for diverse audiences to participate in shared learning experiences, but current understanding of what leads to success in these programs is limited. This large-scale study will address this gap in knowledge by investigating the linkages between program characteristics and participant outcomes for at least 800 single-day environmental education field trip programs for youth in grades 5-8, particularly programs for diverse and underserved audiences. This study will result in the identification of evidence-based practices that will inform future program design for a wide variety of settings, including nature centers, national parks, zoos, museums, aquaria, and other locations providing informal environmental education programs.

This Research in Service to Practice study is guided by two research questions: 1) What program characteristics (context, design, and delivery) most powerfully influence learner self-determination and learner outcomes? And 2) Do the most influential program characteristics differ across diverse and underserved audiences (e.g. African American, Hispanic/Latino, economically disadvantaged) and contexts (e.g. rural versus urban)? This project will examine a wide range of program-related factors, including pedagogical approaches and contextual characteristics. A valid and reliable protocol for observing 78 program characteristics hypothesized to influence learner outcomes developed by a previous project will be used to systematically sample and observe 500 single-day environmental education field trip programs for youth in grades 5-8 distributed across at least 40 U.S. states and territories. Programs for diverse and underserved youth will be emphasized, and a diverse set of programs in terms of program type and context will be sought. Data from this sample will be combined with those of an existing sample of 334 programs provided by over 90 providers. The final combined sample of over 800 programs will provide sufficient statistical power to confidently identify which program components are most consistently linked with learning outcomes. This sample size will also enable stratification of the sample for examination of these relationships within relevant subpopulations. Principal component analyses will be used to reduce data in theoretically meaningful and statistically valid ways, and multilevel structural equation modeling will be employed to examine the influences of both participants' individual characteristics and program and context characteristics on participant outcomes. Since one research question focuses on whether program outcomes are the same across different audiences, the project will include at least 200 programs for each of three specific audiences to ensure sufficient statistical power for confidence in the results: primarily African American, primarily Hispanic/Latino, and primarily White.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Robert Powell Marc Stern Brandon Frensley
resource project Public Programs
American Indian and Alaska Native communities continue to disproportionately face significant environmental challenges and concerns as a predominately place-based people whose health, culture, community, and livelihood are often directly linked to the state of their local environment. With increasing threats to Native lands and traditions, there is an urgent need to promote ecological sustainability awareness and opportunities among all stakeholders within and beyond the impacted areas. This is especially true among the dozens of tribes and over 50,000 members of the Coast Salish Nations in the Pacific Northwest United States. The youth within these communities are particularly vulnerable. This Innovations in Development project endeavors to address this serious concern by implementing a multidimensional, multigenerational model aimed at intersecting traditional ecological knowledge with contemporary knowledge to promote: (a) environmental sustainability awareness, (b) increased STEM knowledge and skills across various scientific domains, and (c) STEM fields and workforce opportunities within Coast Salish communities. Building on results from a prior pilot study, the project will be grounded on eight guiding principles. These principles will be reflected in all aspects of the project including an innovative, culturally responsive toolkit, curriculum, museum exhibit and programming, workshops, and a newly established community of practice. If successful, this project could provide new insights on effective mechanisms for not only promoting STEM knowledge and skills within informal contexts among Coast Salish communities but also awareness and social change around issues of environmental sustainability in the Pacific Northwest.

Over a five-year period, the project will build upon an extant curriculum and findings codified in a pilot study. Each aspect of the pilot work will be refined to ensure that the model established in this Innovations and Development project is coherent, comprehensive, and replicable. Workshops and internships will prepare up to 200 Coast Salish Nation informal community educators to implement the model within their communities. Over 2,500 Coast Salish Nation and Swinomish youth, adults, educators, and elders are expected to be directly impacted by the workshops, internships, curriculum and online toolkit. Another 300 learners of diverse ages are expected to benefit from portable teaching collections developed by the project. Through a partnership with the Washington State Burke Natural History Museum, an exhibit and museum programming based on the model will be developed and accessible in the Museum, potentially reaching another 35,000 people each year. The project evaluation will assess the extent to which the following expected outcomes are achieved: (a) increased awareness and understanding of Indigenous environmental sustainability challenges; (b) increased skills in developing and implementing education programs through an Indigenous lens; (c) increased interest in and awareness of the environmental sciences and other STEM disciplines and fields; and (d) sustainable relationships among the Coast Salish Nations. A process evaluation will be conducted to formatively monitor and assess the work. A cross cultural team, including a recognized Coast Salish Indigenous evaluator, will lead the summative evaluation. The project team is experienced and led by representatives from the Swinomish Indian Tribal Community, Oregon State University, Garden Raised Bounty, the Center for Lifelong STEM Learning, the Urban Indian Research Institute, Feed Seven Generations, and the Burke Museum of Natural History and Culture.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Jamie Donatuto Diana Rohlman Elise Krohn Valerie Segrest Rosalina James
resource project Media and Technology
Increasingly, scientists and their institutions are engaging with lay audiences via media. The emergence of social media has allowed scientists to engage with publics in novel ways. Social networking sites have fundamentally changed the modern media environment and, subsequently, media consumption habits. When asked where they primarily go to learn more about scientific issues, more than half of Americans point to the Internet. These online spaces offer many opportunities for scientists to play active roles in communicating and engaging directly with various publics. Additionally, the proposed research activities were inspired by a recent report by the National Academies of Sciences, Engineering, and Medicine that included a challenge to science communication researchers to determine better approaches for communicating science through social media platforms. Humor has been recommended as a method that scientists could use in communicating with publics; however, there is little empirical evidence that its use is effective. The researchers will explore the effectiveness of using humor for communicating about artificial intelligence, climate science and microbiomes.

The research questions are: How do lay audiences respond to messages about scientific issues on social media that use humor? What are scientists' views toward using humor in constructing social media messages? Can collaborations between science communication scholars and practitioners facilitate more effective practices? The research is grounded in the theory of planned behavior and framing as a theory of media effects. A public survey will collect and analyze data on Twitter messages with and without humor, the number of likes and re-tweets of each message, and their scientific content. Survey participants will be randomly assigned to one of twenty-four experimental conditions. The survey sample, matching recent U.S. Census Bureau data, will be obtained from opt-in panels provided by Qualtrics, an online market research company. The second component of the research will quantify the attitudes of scientists toward using humor to communicate with publics on social media. Data will be collected from a random sample of scientists and graduate students at R1 universities nationwide. Data will be analyzed using descriptive statistics and regression modeling.

The broader impacts of this project are twofold: findings from the research will be shared with science communication scholars and trainers advancing knowledge and practice; and an infographic (visual representation of findings) will be distributed to practitioners who participate in research-practice partnerships. It will provide a set of easily-referenced, evidence-based guidelines about the types of humor to which audiences respond positively on social media.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Sara Yeo Leona Yi-Fan Su Michael Cacciatore
resource project Exhibitions
The project will develop and research how an emerging technology, immersive virtual reality (IVR) using head mounted displays (HMDs), can enhance ocean literacy and generate empathy towards environmental issues. Recent advances in design have resulted in HMDs that provide viscerally realistic and immersive experiences that situate participants in underwater or other remote environments. IVR can provide many people with virtual access to these environments, including persons with disabilities, people living away from coastal areas, or those who lack access for other reasons (e.g., low-income families, underserved/underrepresented communities, persons untrained in diving). The project will develop a high quality 360-degree underwater film that includes live action footage, animation, and interactive elements. The IVR experience will take the participant through an immersive underwater journey of a Pacific reef, using realistic visualizations, narrative, and a compelling story to engage participants in learning the ecology and biology of coral reefs, as well as the impacts of climate change and human disturbances on ocean ecosystems. In addition to the IVR ocean journey, the project will integrate interactive functionality of being on a reef during mass coral spawning, an annual natural phenomenon through which coral reefs replenish their populations. With hand-held controllers, participants will be able to "swim" through the water, watch the degraded reef recover and grow and will have the ability to change the rate of coral recovery and learn how increases in temperature impede coral recovery. While research has been conducted on early, desk-top versions of IVR, the potential impact of IVR on learning is still unclear. The research findings will help guide the development of IVR for use in informal STEM environments such as aquariums, zoos, science museums, and others. The IVR experience will be shared on online platforms for home viewing, at film festivals and conferences, and in informal learning environments.

The project addresses the need for research on the impacts of IVR devices as it become more affordable and more widely used at home and in other informal and formal environments. Few studies have investigated how design elements impact the user in IVR, in which the increased immersion affects the stimuli perception and cognitive processing. The research will assess the learning affordances and impacts of the IVR experience on participant ocean literacy (adapting items from an existing ocean literacy survey), environmental empathy/feelings of presence (naturalistic observations and post-experience interviews), and perceived self-efficacy (pre-post survey, post-interview interviews). In addition, the project will research how segmentation (i.e., a continuous experience vs. an experience with breaks), generative learning tasks (hands-on experiences and interactive during IVR), and gender of the narrator in an IVR experience supports learning about ocean environments. Researchers will collect data from students attending high schools with predominantly minority student enrollments. Research findings will be widely shared through peer-reviewed publications, conference presentations, and publications for educators and designers.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Jeremy Bailenson Erika Woolsey
resource project Media and Technology
This four-year research study will investigate families' joint media engagement (JME) and informal STEM learning while listening to the child-focused STEM podcast, Brains On! Prior research has shown that the setting where families most often listen to this podcast together is the family automobile as children are being driven to school, on road trips, or other activities. Brains On! is rooted in the mission-driven principle of public radio to educate and inspire. The target audience is children 5-12 years old and their parents or caregivers. Each episode ranges from 20-45 minutes in length and presents ideas from a variety of STEM disciplines such as physics, chemistry, biology and engineering featuring sound-rich explanations of concepts through fun skits, original songs and interviews with scientists. The episodes use a light-hearted, humorous approach to share oftentimes complex STEM information. To provide an interactive experience, hosts encourage the audience to participate with the show by sending in drawings, emailing photos of plants and animals, or posing questions to be answered in future episodes. Every episode is co-hosted by a different child who interviews top scientists about their work. The scientists are selected to be representative of the range of topics presented and are meant to serve as role models for the listeners and demonstrating a wide range of career options in the STEM field.

The research adds to the social learning theory of joint media engagement (JME) which has shown that interactions between people sharing a media experience can result in learning together. Recent work on Joint Media Engagement has focused on parent/child interactions with television/video in the home. But little is known about how families engage with children's STEM podcasts together and what learning interactions occur as a result. Even less is known about this engagement within an automobile setting. This research project will build new knowledge filling a gap in the informal STEM learning field. It will use a mixed-methods research design with three phases of research to answer these questions: 1) How does the Brains On! podcast mediate STEM-based joint media engagement and family learning in an automobile setting? 2) What does STEM based joint media engagement and family learning look and sound like in this setting? 3) How do "in-automobile" factors foster or impede STEM-based joint media engagement and family learning? Phase 1 is a listener experience video study of 30 families listening to the Brains On! episodes. Phase 2 is video-based case studies of the natural automobile-based listening behaviors of eight Phase 1 families. Phase 3 is an online survey of Brains On! listeners to understand how representative the findings from Phases 1 and 2 are to the larger Brains On! Research. Results will be shared widely with key audiences that can use the findings (media developers, ISE practitioners, ISE evaluators and researchers, and families). It will also make an important contribution to the Joint Media Engagement literature and the ISE field.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Amy Grack Nelson Molly Bloom
resource evaluation Media and Technology
Funded by the National Science Foundation (NSF), Amazon Adventure is an Innovations in Development project directed by Pacific Science Center in partnership with: SK Films; Rutgers, The State University of New Jersey; Embodied Games; and the Howard Hughes Medical Institute’s Tangled Bank Studios. The project deliverables produced during the grant period include a giant screen film, live stage presentation for use at informal science education (ISE) institutions, and educational resources. The centerpiece of the project, the Amazon Adventure film, is a 45-minute giant screen film shown in
DATE:
resource research Professional Development, Conferences, and Networks
BioEYES is a K-12 science outreach program that develops self-sustaining teachers as a replication strategy to address high demand for the program while promoting long-term school partnerships. This paper explores the practices of “model teachers” from multiple grades, who are empowered over a three-year period to deliver BioEYES’ hands-on science content autonomously, as compared to the program’s standard co-teaching model (BioEYES educator + classroom teacher). The authors found that BioEYES’ professional development (PD) workshop, classroom co-teaching experience, and refresher trainings
DATE:
TEAM MEMBERS: Jamie Shuda Valerie Butler Robert Vary Steven Farber
resource project Media and Technology
A team of experts from five institutions (University of Minnesota, Adler Planetarium, University of Wyoming, Colorado State University, and UC San Diego) links field-based and online analysis capabilities to support citizen science, focusing on three research areas (cell biology, ecology, and astronomy). The project builds on Zooniverse and CitSci.org, leverages the NSF Science Gateways Community Institute, and enhances the quality of citizen science and the experience of its participants.

This project creates an integrated Citizen Science Cyberinfrastructure (CSCI) framework that expands the capacity of research communities across several disciplines to use citizen science as a suitable and sustainable research methodology. CSCI produces three improvements to the infrastructure for citizen science already provided by Zooniverse and CitSci.org:


Combining Modes - connecting the process of data collection and analysis;
Smart Assignment - improving the assignment of tasks during analysis; and
New Data Models - exploring the Data-as-Subject model. By treating time series data as data, this model removes the need to create images for classification and facilitates more complex workflows. These improvements are motivated and investigated through three distinct scientific cases:
Biomedicine (3D Morphology of Cell Nucleus). Currently, Zooniverse 'Etch-a-Cell' volunteers provide annotations of cellular components in images from high-resolution microscopy, where a single cell provides a stack containing thousands of sliced images. The Smart Task Assignment capability incorporates this information, so volunteers are not shown each image in a stack where machines or other volunteers have already evaluated some subset of data.
Ecology (Identifying Individual Animals). When monitoring wide-ranging wildlife populations, identification of individual animals is needed for robust estimates of population sizes and trends. This use case combines field collection and data analysis with deep learning to improve results.
Astronomy (Characterizing Lightcurves). Astronomical time series data reveal a variety of behaviors, such as stellar flares or planetary transits. The existing Zooniverse data model requires classification of individual images before aggregation of results and transformation back to refer to the original data. By using the Data-as-Subject model and the Smart Task Assignment capability, volunteers will be able to scan through the entire time series in a machine-aided manner to determine specific light curve characteristics.


The team explores the use of recurrent neural networks (RNNs) to determine automated learning architectures best suited to the projects. Of particular interest is how the degree to which neighboring subjects are coupled affects performance. The integration of existing tools, which is based on application programming interfaces (APIs), also facilitates further tool integration. The effort creates a citizen science framework that directly advances knowledge for three science use cases in biomedicine, ecology, and astronomy, and combines field-collected data with data analysis. This has the ability to solve key problems in the individual applications, as well as benefiting the research of the dozens of projects on the Zooniverse platform. It provides benefits to researchers using citizen scientists, and to the nearly 1.6 million citizen scientists themselves.

This award by the Office of Advanced Cyberinfrastructure is jointly supported by the Division of Research on Learning in Formal and Informal Settings, within the NSF Directorate for Education and Human Resources.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Gregory Newman Subhashini Sivagnanam Laura Trouille Sarah Benson-Amram Jeff Clune Lucy Fortson Craig Packer Christopher Lintott Daniel Boley
resource evaluation Public Programs
Activity to imagine what it’s like to be an animal and to recognize that aquarium/zoo animals have wild counterparts with similar needs.
DATE: