Skip to main content

Community Repository Search Results

resource project Exhibitions
RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
DATE: -
TEAM MEMBERS:
resource project Public Programs
This is an NSF Postdoctoral Research Fellowship in Biology, under the program Broadening Participation of Groups Under-represented in Biology. The fellow, Robert Habig, is conducting research and receiving training that is increasing the participation of groups underrepresented in biology. The fellow is being mentored by David Lahti at Queens College, City University of New York. The goal of the fellow's project is to perform a comparative evolutionary analysis of nest construction in the weaverbirds (Ploceus spp.). The evolutionary history of behavior can be nearly intractable and resistant to quantitative analysis. One strategy for illuminating our understanding of behavioral evolution is to conduct comparative studies of animal architectures, such as nests. Unlike behaviors themselves, nests persist through time, and have structures that can be disassociated into several quantitative features, which permits easy and comparable measurements and allows scientists to address questions about evolutionary history and functional relevance. The fellow's research addresses two major questions: (1) How do patterns of nest construction vary within and between species? (2) How do interrelated evolutionary processes shape variation in nest structure? This project is important for advancing foundational scientific knowledge, and will be the first study of weavers incorporating both molecular data and nest morphology to better understand the evolutionary underpinnings of a complex behavioral process. The fellow is also broadening participation in science by mentoring students underrepresented in biology.

The Fellow will reconstruct the evolution of nest construction in Ploceus weaverbirds incorporating advanced phylogenetic and morphological techniques including bioinformatics, computer modeling, X-ray computed tomography, and image processing. The Fellow will also conduct fieldwork in two hotspots of weaverbird diversity, the Awash Valley in Ethiopia and the Limpopo Province of South Africa, and collect behavioral data (e.g. rates of predation and brood parasitism; mating and parental behavior) and morphological data (e.g. nest structure) to test hypotheses of how distinct types of evolutionary selection shape the evolution of nest construction. The proposed comparative study can thus address questions such as how rapidly certain nest structural features evolve, which features are ancestral versus derived, which tend to exhibit phylogenetic signal, and which evolve in response to environmental features. The Fellow is receiving training in three-dimensional morphological analyses, phylogenetic tree construction, bioinformatics, computer modeling, and mentoring skills. The plan to broaden participation includes (1) recruitment, training, and mentoring of Queens College students from underrepresented groups in biology; (2) designing an evolutionary biology curriculum that ties in the research of the fellowship; (3) teaching an evolutionary biology class to underrepresented middle and high school students at the American Museum of Natural History; and (4) facilitating a research team for middle school and high school students.
DATE: -
TEAM MEMBERS: Bobby Habig
resource project Media and Technology
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

Despite the rich scientific evidence of adaptations and their evolutionary basis, there are concerning public misconceptions about evolution, processes of natural selection, and adaptations in the biodiverse world. Such misconceptions begin early. Younger elementary school children are often resistant to the idea that one “kind” of animal could descend from a completely different kind of animal, and they see features as having always existed. Other misconceptions lead to an inaccurate belief that changes in individual organisms acquired in a lifetime are passed directly on to offspring or that entire populations transform as a whole. These cognitive biases and "intuitive” misunderstandings can persist into adulthood. This Innovations in Development project will counter that narrative through an informal science project focusing on the blue whale one of nature’s most spectacular stories of adaptation. It is a species that lives life at extremes: a long-distance migrator, a deep diver, an extravagant eater, the largest animal to ever exist. With its awe-inspiring size and rich mosaic of anatomical, physiological, and behavioral specializations, it serves as a bridge to an enriched understanding of universal concepts in elementary biology and can begin to dispel the deeply rooted misconceptions. The project deliverables include a giant screen film documenting the field work of research scientists studying the blue whales in the Indian Ocean and Gulf of Mexico; multi-platform educational modules and programs that will build on the blue whale content from the film for use in science center programs and rural libraries; and professional development webinars that will offer content utilization and presentation skills for ISE facilitators. Project partners include California Science Center, STAR Library Education Network, HHMI Tangled Bank Studios and SK Films.

The external evaluation studies will gather data from 20 participating rural libraries and 6 science museums. A formative evaluation of the film will be conducted in a giant screen theater setting with 75 families. After viewing a fine-cut version of the film they will complete age-appropriate post-viewing surveys on the film’s engagement, storytelling, content appeal and clarity, and learning value in communicating key science concepts. An external summative evaluation will include three studies. Study 1 will assess the implementation of the project at the 26 organizations, addressing the question: To what extent is the project implemented as envisioned in the libraries and science center settings? Baseline information will be collected, and later partners will complete post-grant surveys to report on their actual implementation of the project elements. In addition, the study will examine outcomes relating to professional development. Study 2 will be an evaluation of the film as experienced by 400 youth and parents in science centers and examining the question: To what extent does experiencing the film engage youth and parents and affect their interest, curiosity, and knowledge of blue whales, adaptations, and the scientific process? Study 3 will examine: To what extent and how does experiencing an educational module (virtual field trips, hands on activities, augmented reality) affect youth and parents’ interest, curiosity, and knowledge of adaptations and scientific process?
DATE: -
TEAM MEMBERS: Charles Kopczak Gretchen Bazela
resource project Exhibitions
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

Zoos and aquariums have been offering programming, events, and visit accommodations to autistic individuals for several years. While these efforts can provide great experiences, they are focused more on accommodation and the outward-facing guest experience than inclusion. Lack of inclusion features in design, programming, and representation amongst zoo and aquarium representatives, ultimately limits full inclusion and adds to a sense in autistic individuals of not belonging and not being welcomed. To develop a fully inclusive experience for autistic individuals, this project will develop an evidence-based framework of inclusive practices for zoos and aquariums and build a community of practice around inclusion broadly. The project brings together researchers from Oregon State University, Vanderbilt Kennedy Center’s Treatment and Research Institute for Autism Spectrum Disorders, and the Association of Zoos and Aquariums. Researchers will create and investigate the extent and ways in which a research-informed framework and associated tools (i.e. case studies, discussion guides, self-guided audits, etc.) and strategies support science learning for autistic individuals, and help practitioners expand access and inclusion of autistic audiences beyond special events or the general visit experience by applying inclusive practices for programs, exhibit development, internships, volunteer opportunities, and employment. To maximize impact, the project will develop and expand a network of early adopters to build a community of practice around inclusive practices to develop fully inclusive zoo and aquarium experiences for all individuals.

The project will investigate 4 research questions: (1) In what ways and to what extent are zoos and aquariums currently addressing access and inclusion for autistic individuals? (2) How do staff in zoos and aquariums perceive their and their institution’s willingness and ability to address access and inclusion for autistic individuals? (3) What is a framework of evidence-based practices across the zoo and aquarium experience that is inclusive for autistic individuals, and what associated tools and strategies are needed to make the framework useful for early adopters? And (4) to what extent and in what ways does a research informed framework with associated tools and strategies engage, support, and enhance an existing community of practitioners already dedicated to addressing autistic audiences and promote inclusive practices at zoos and aquariums for autistic people? The project is designed as two phases: (1) the research and development of a framework of inclusive practices and tools for supporting autistic individuals and (2) expanding a network of early adopters to build a community of practice around inclusive practices and an overall strategy of implementation. The framework will be informed through a state of the field study across the zoo/aquarium field that includes a landscape study and needs assessment as well as a review of literature that synthesizes existing research across disciplines for developing inclusive practices for autistic individuals in zoos and aquariums. The team will also conduct online surveys and focus groups to gather input from various stakeholders including zoo and aquarium employees and practitioners, autistic individuals, and their social groups (e.g., family members, peers, advocacy organizations). The second phase of the study will focus on sharing the framework and tools with practitioners across the zoo/aquarium field for feedback and reflection to develop an overall strategy for broader implementation and expanding the existing network of zoo and aquarium professionals to build a community of practice dedicated to the comprehensive inclusion of autistic individuals across the full zoo and aquarium experience. The results will be disseminated through conference presentations, scholarly publications, online discussion forums, and collaborative partners’ websites. The project represents one of the first of its kind on autistic audiences within the zoo and aquarium context and is the first to look at the full experience of autistic patrons to zoos and aquariums across programs/events, exhibits, volunteering, internship, and employment opportunities. A process evaluation conducted as part of the project will explore how the approach taken in this project may be more broadly applied in understanding and advancing inclusion for other audiences historically underserved or marginalized by zoos and aquariums.

This Research in Service to Practice project is supported by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Kelly Riedinger Lauren Weaver Amy Rutherford
resource project Public Programs
Biology has become a powerful and revolutionary technology, uniquely poised to transform and propel innovation in the near future. The skills, tools, and implications of using living systems to engineer innovative solutions to human health and global challenges, however, are still largely foreign and inaccessible to the general public. The life sciences need new ways of effectively engaging diverse audiences in these complex and powerful fields. Bio-Tinkering Playground will leverage a longtime partnership between the Stanford University Department of Genetics and The Tech Museum of Innovation to explore and develop one such powerful new approach.

The objective of Bio-Tinkering Playground is to create and test a groundbreaking type of museum space: a DIY community biology lab and bio-makerspace, complete with a unique repertoire of hands-on experiences. We will tackle the challenge of developing both open-ended bio-making activities and more scaffolded ones that, together, start to do for biology, biotech, and living systems what today’s makerspaces have done for engineering.

A combined Design Challenge Learning, making, and tinkering approach was chosen because of its demonstrated effectiveness at fostering confidence, creative capacity, and problem solving skills as well as engaging participants of diverse backgrounds. This educational model can potentially better keep pace with the emerging and quickly evolving landscape of biotech to better prepare young people for STEM careers and build the next generation of biotech and biomedical innovators.

Experience development will be conducted using an iterative design process that incorporates prototyping and formative evaluation to land on a final cohort of novel, highly-vetted Bio-Tinkering Playground experience. In the end, the project will generate a wealth of resources and learnings to share with the broader science education field. Thus, the impacts of our foundational work can extend well beyond the walls of The Tech as we enable other educators and public institutions around the world to replicate our model for engagement with biology.
DATE: -
TEAM MEMBERS: Anja Scholze
resource project Public Programs
This project will examine the characteristics and outcomes of a large sample of environmental education field trip programs for youth to elucidate program characteristics that most powerfully influence 21st century learning outcomes. Environmental education programs for youth, particularly day-long school trip programs, are popular and reside at the intersection of formal and informal STEM education. Such field trips provide opportunities for diverse audiences to participate in shared learning experiences, but current understanding of what leads to success in these programs is limited. This large-scale study will address this gap in knowledge by investigating the linkages between program characteristics and participant outcomes for at least 800 single-day environmental education field trip programs for youth in grades 5-8, particularly programs for diverse and underserved audiences. This study will result in the identification of evidence-based practices that will inform future program design for a wide variety of settings, including nature centers, national parks, zoos, museums, aquaria, and other locations providing informal environmental education programs.

This Research in Service to Practice study is guided by two research questions: 1) What program characteristics (context, design, and delivery) most powerfully influence learner self-determination and learner outcomes? And 2) Do the most influential program characteristics differ across diverse and underserved audiences (e.g. African American, Hispanic/Latino, economically disadvantaged) and contexts (e.g. rural versus urban)? This project will examine a wide range of program-related factors, including pedagogical approaches and contextual characteristics. A valid and reliable protocol for observing 78 program characteristics hypothesized to influence learner outcomes developed by a previous project will be used to systematically sample and observe 500 single-day environmental education field trip programs for youth in grades 5-8 distributed across at least 40 U.S. states and territories. Programs for diverse and underserved youth will be emphasized, and a diverse set of programs in terms of program type and context will be sought. Data from this sample will be combined with those of an existing sample of 334 programs provided by over 90 providers. The final combined sample of over 800 programs will provide sufficient statistical power to confidently identify which program components are most consistently linked with learning outcomes. This sample size will also enable stratification of the sample for examination of these relationships within relevant subpopulations. Principal component analyses will be used to reduce data in theoretically meaningful and statistically valid ways, and multilevel structural equation modeling will be employed to examine the influences of both participants' individual characteristics and program and context characteristics on participant outcomes. Since one research question focuses on whether program outcomes are the same across different audiences, the project will include at least 200 programs for each of three specific audiences to ensure sufficient statistical power for confidence in the results: primarily African American, primarily Hispanic/Latino, and primarily White.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Robert Powell Marc Stern Brandon Frensley
resource project Public Programs
American Indian and Alaska Native communities continue to disproportionately face significant environmental challenges and concerns as a predominately place-based people whose health, culture, community, and livelihood are often directly linked to the state of their local environment. With increasing threats to Native lands and traditions, there is an urgent need to promote ecological sustainability awareness and opportunities among all stakeholders within and beyond the impacted areas. This is especially true among the dozens of tribes and over 50,000 members of the Coast Salish Nations in the Pacific Northwest United States. The youth within these communities are particularly vulnerable. This Innovations in Development project endeavors to address this serious concern by implementing a multidimensional, multigenerational model aimed at intersecting traditional ecological knowledge with contemporary knowledge to promote: (a) environmental sustainability awareness, (b) increased STEM knowledge and skills across various scientific domains, and (c) STEM fields and workforce opportunities within Coast Salish communities. Building on results from a prior pilot study, the project will be grounded on eight guiding principles. These principles will be reflected in all aspects of the project including an innovative, culturally responsive toolkit, curriculum, museum exhibit and programming, workshops, and a newly established community of practice. If successful, this project could provide new insights on effective mechanisms for not only promoting STEM knowledge and skills within informal contexts among Coast Salish communities but also awareness and social change around issues of environmental sustainability in the Pacific Northwest.

Over a five-year period, the project will build upon an extant curriculum and findings codified in a pilot study. Each aspect of the pilot work will be refined to ensure that the model established in this Innovations and Development project is coherent, comprehensive, and replicable. Workshops and internships will prepare up to 200 Coast Salish Nation informal community educators to implement the model within their communities. Over 2,500 Coast Salish Nation and Swinomish youth, adults, educators, and elders are expected to be directly impacted by the workshops, internships, curriculum and online toolkit. Another 300 learners of diverse ages are expected to benefit from portable teaching collections developed by the project. Through a partnership with the Washington State Burke Natural History Museum, an exhibit and museum programming based on the model will be developed and accessible in the Museum, potentially reaching another 35,000 people each year. The project evaluation will assess the extent to which the following expected outcomes are achieved: (a) increased awareness and understanding of Indigenous environmental sustainability challenges; (b) increased skills in developing and implementing education programs through an Indigenous lens; (c) increased interest in and awareness of the environmental sciences and other STEM disciplines and fields; and (d) sustainable relationships among the Coast Salish Nations. A process evaluation will be conducted to formatively monitor and assess the work. A cross cultural team, including a recognized Coast Salish Indigenous evaluator, will lead the summative evaluation. The project team is experienced and led by representatives from the Swinomish Indian Tribal Community, Oregon State University, Garden Raised Bounty, the Center for Lifelong STEM Learning, the Urban Indian Research Institute, Feed Seven Generations, and the Burke Museum of Natural History and Culture.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Jamie Donatuto Diana Rohlman Elise Krohn Valerie Segrest Rosalina James
resource project Media and Technology
A team of experts from five institutions (University of Minnesota, Adler Planetarium, University of Wyoming, Colorado State University, and UC San Diego) links field-based and online analysis capabilities to support citizen science, focusing on three research areas (cell biology, ecology, and astronomy). The project builds on Zooniverse and CitSci.org, leverages the NSF Science Gateways Community Institute, and enhances the quality of citizen science and the experience of its participants.

This project creates an integrated Citizen Science Cyberinfrastructure (CSCI) framework that expands the capacity of research communities across several disciplines to use citizen science as a suitable and sustainable research methodology. CSCI produces three improvements to the infrastructure for citizen science already provided by Zooniverse and CitSci.org:


Combining Modes - connecting the process of data collection and analysis;
Smart Assignment - improving the assignment of tasks during analysis; and
New Data Models - exploring the Data-as-Subject model. By treating time series data as data, this model removes the need to create images for classification and facilitates more complex workflows. These improvements are motivated and investigated through three distinct scientific cases:
Biomedicine (3D Morphology of Cell Nucleus). Currently, Zooniverse 'Etch-a-Cell' volunteers provide annotations of cellular components in images from high-resolution microscopy, where a single cell provides a stack containing thousands of sliced images. The Smart Task Assignment capability incorporates this information, so volunteers are not shown each image in a stack where machines or other volunteers have already evaluated some subset of data.
Ecology (Identifying Individual Animals). When monitoring wide-ranging wildlife populations, identification of individual animals is needed for robust estimates of population sizes and trends. This use case combines field collection and data analysis with deep learning to improve results.
Astronomy (Characterizing Lightcurves). Astronomical time series data reveal a variety of behaviors, such as stellar flares or planetary transits. The existing Zooniverse data model requires classification of individual images before aggregation of results and transformation back to refer to the original data. By using the Data-as-Subject model and the Smart Task Assignment capability, volunteers will be able to scan through the entire time series in a machine-aided manner to determine specific light curve characteristics.


The team explores the use of recurrent neural networks (RNNs) to determine automated learning architectures best suited to the projects. Of particular interest is how the degree to which neighboring subjects are coupled affects performance. The integration of existing tools, which is based on application programming interfaces (APIs), also facilitates further tool integration. The effort creates a citizen science framework that directly advances knowledge for three science use cases in biomedicine, ecology, and astronomy, and combines field-collected data with data analysis. This has the ability to solve key problems in the individual applications, as well as benefiting the research of the dozens of projects on the Zooniverse platform. It provides benefits to researchers using citizen scientists, and to the nearly 1.6 million citizen scientists themselves.

This award by the Office of Advanced Cyberinfrastructure is jointly supported by the Division of Research on Learning in Formal and Informal Settings, within the NSF Directorate for Education and Human Resources.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Gregory Newman Subhashini Sivagnanam Laura Trouille Sarah Benson-Amram Jeff Clune Lucy Fortson Craig Packer Christopher Lintott Daniel Boley
resource project Public Programs
To reach its full potential in science, technology, engineering, and mathematics (STEM), the United States must continue to recruit, prepare and maintain a diverse STEM workforce. Much work has been done in this regard. Yet, underrepresentation in STEM fields persists and is especially pronounced for Hispanic STEM professionals. The Hispanic community is the youngest and fastest growing racial/ethnic group in the United States but comprises only seven percent of the STEM workforce. More evidence-based solutions and innovative approaches are required. This project endeavors to address the challenges of underrepresentation in STEM, especially among individuals of Hispanic descent, through an innovative approach. The University of San Diego will design, develop, implement, and test a multilayered STEM learning approach specific to STEM learning and workforce development in STEM fields targeting Hispanic youth. The STEM World of Work project will explore youth STEM identity through three mechanisms: (1) an assessment of their individual interests, strengths, and values, (2) exposure to an array of viable STEM careers, and (3) engagement in rigorous hands-on STEM activities. The project centers on a youth summer STEM enrichment program and a series of follow-up booster sessions delivered during the academic year in informal contexts to promote family engagement. Paramount to this work is the core focus on San Diego's Five Priority Workforce Sectors: Advanced Manufacturing, Information and Communications Technology, Clean Energy, Healthcare, and Biotech. Few, if any, existing projects in the Advancing Informal STEM learning portfolio have explored the potential connections between these five priority workforce sectors, informal STEM learning, and identity among predominately Hispanic youth and families engaged in a year-long, culturally responsive STEM learning and workforce focused program. If successful, the model could provide a template for the facilitation of similar efforts in the future.

The STEM World of Work project will use a mixed-methods, exploratory research design to better understand the variables influencing STEM learning and academic and career choices within the proposed context. The research questions will explore: (1) the impacts of the project on students' engagement, STEM identity, STEM motivation, and academic outcomes, (2) factors that moderate these outcomes, and (3) the impact the model has on influencing youths' personal goals and career choices. Data will be garnered through cross-sectional and longitudinal surveys and reflective focus groups with the students and their parents/guardians. Multivariate analysis of variance, longitudinal modeling, and qualitative analysis will be conducted to analyze and report the data. The findings will be disseminated using a variety of methods and platforms. The broader impacts of the findings and work are expected to extend well beyond the project team, graduate student mentors, project partners, and the estimated 120 middle school students and their families from the predominately Hispanic Chula Vista Community of San Diego who will be directly impacted by the project.

This exploratory pathways project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Perla Myers Vitaliy Popov Odesma Dalrymple Yaoran Li Joi Spencer
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This Change Makers project will establish Food Justice Ambassador corps across three cities in Massachusetts where youth will install, manage and learn the science and technology underlying hydroponics. The project takes a near-peer mentoring approach that empowers high school youth to take the lead in improving ethnic minority and low-income residents' access to healthy produce and to help educate middle school youth regarding the value of fresh produce in one's diet by learning the science of hydroponics. Youth will create story maps to visualize food accessibility in their communities. High school youth will work with their communities to establish hydroponic farms in middle school after-school settings. The food that is grown will be provided to the community through farmers' markets. Youth will share their work with a larger community of urban farmers at the Massachusetts Urban Farming Conference. This project seeks to understand the contribution on youth development by the model's three components: (1) STEM learning embedded in a social justice framework, (2) near-peer mentoring, and (3) youth purpose and career development. This will enable researchers to better understand how the project enables youth to learn STEM skills; apply them to a real life problem; learn the relevance of STEM skills for addressing personal, career aspiration, and social justice issues; develop a sense of purpose and aspirations related to STEM fields; and mentor other youth through the same process. The project will use a mixed-method, multi-site longitudinal study utilizing quantitative surveys, structural equation modeling, and qualitative interviews to study the intersections of the components of the project. As such, the study will address three key questions: 1) How do youth and mentors perceive and experience their roles as participants in the pedagogy? 2) What is the impact of the intervention on youth' sense of purpose, identity, career adaptability, work volition, critical consciousness, school engagement, STEM interests, and STEM intentionality? 3) What is the contribution of relational/mentoring and psychosocial/career adaptability aspects of the youths' contexts on their capacity to benefit from this program and to develop and sustain purpose and engagement in school and STEM? Most urban youth (and adults) have little knowledge of where their food comes from and have limited opportunities to learn how to grow produce as well as develop related skills that can lead to a career in a STEM field. This is particularly disconcerting as 55% of African Americans live inside central cities (90% in metropolitan areas) and over half of all Latino/as live in central cities (United States Census Bureau, 2011). This project entails the recruitment of low-income youth from populations underrepresented in science into a program where social justice concerns (food justice, food security) are illuminated, analyzed, and acted upon through the development of STEM knowledge and skills. Specifically, this project recognizes the potential for urban youth to become deeply knowledgeable citizens who can mobilize their STEM knowledge and skills to resolve social injustices such as food deserts. If successful, this project will provide a model that should be transferable to similar contexts to help broaden participation in STEM.
DATE: -
TEAM MEMBERS: George Barnett Belle Liang David Blustein
resource project Media and Technology
Lineage is a comprehensive educational media and outreach initiative that will engage individuals and families in learning about deep time and evolution, helping audiences come to newfound understandings of the connections between the past, present, and future of life on Earth. The project is a partnership between Twin Cities PBS (TPT) and the Smithsonian Institution's National Museum of Natural History and is linked to the opening of that museum's new Deep Time Fossil Hall in June 2019. The project includes a two-hour film for national broadcast on PBS, and a 20-minute short version for exhibition in science centers. The documentaries will show how scientists, using paleontology, genetics, earth science and other disciplines, can reconstruct in detail the origins of living animals like birds and elephants, revealing their ancient past as well as evidence of ecological change that can inform our understanding of Earth today. Extensive educational outreach will include the creation of "Bone Hunter," an innovative VR (Virtual Reality) game designed for family co-play that engages multiple players in the process of paleontology as they piece together a fossil in a digital lab. Bone Hunter and other collaborative educational activities will be deployed at Family Fossil Festivals that will attract multi-generational learners. One such Festival will take place at the Smithsonian Institution in Washington, D.C., while others will be based at geographically diverse institutions that serve underserved rural as well as urban communities. Lineage is a collaboration between national media producers, noted learning institutions and researchers, including Twin Cities Public Television, the Smithsonian Institution / National Museum of Natural History, Schell Games, the Institute for Learning Innovation (ILI), and Rockman et al. One of the project's primary innovations is its exploration of new learning designs for families that use cutting-edge technologies (e.g. the Bone Hunter virtual reality game) and collaborative multi-generational learning experiences that advance science knowledge and inquiry-based learning. An external research study conducted by ILI will investigate how intergenerational co-play with physical artifacts compared to virtual artifacts influences STEM (Science Technology Engineering Mathematics) learning and engagement. The findings will lead to critical strategic impacts for the field, building knowledge about ongoing innovation in the free choice learning space. The project's external evaluation will be conducted by Rockman et al and evaluative findings, as well as the educational materials derived from the project, will be widely disseminated through partnerships with professional and educator groups. Clips from the Lineage film and related learning resources will be hosted on PBS LearningMedia, so educators can incorporate these resources into their classrooms, and students and lifelong learners can explore and discover on their own. The project outcomes will have broad impact on public audiences, deepening and advancing knowledge and understanding about important scientific concepts, and promoting continued, family-based collaborative learning experiences to expand and deepen STEM knowledge. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning.
DATE: -
TEAM MEMBERS: Michael Rosenfeld Sarah Goforth Amy Bolton
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The project will use a design-based research process to research and develop an innovative theatrical game that will improve visitors' understanding of complex topics requiring conceptual change. This project will research a novel experience that helps visitors engage with difficult content in informal science education venues, uses existing exhibit and collection assets in a new way, and creates a venue for visitor engagement that requires less capitalization than a full exhibition project. For the public, this project will blend best practices from exhibit development, museum theater, and facilitation with emerging theories about game-based learning to create a novel experience that deeply engages visitors with an evolution storyline and allows them to explore the museum and interact with one another in new ways. For the field, the project will examine how theatrical games can be valuable, viable experiences in museum environments and what game mechanics and supports contribute to players' conceptual thinking. While the project's games with theatrical elements will focus on evolution, the tested strategies will provide valuable information about effective approaches for informal STEM education more broadly wherever audiences exhibit major misconceptions or discomfort with scientific ideas. The project will disseminate findings through conferences and workshops, academic reports, a research-to-practice implementation guide, and a training video about best practices for engaging the public in theatrical gaming.

The project will focus on the creation and modification of a theoretical framework that describes the content, program format, and degree of facilitation necessary to create experiences that support conceptual change in visitors' thinking about evolution--and, by extension, other complex topics. The project team and advisors will collaboratively will build varying levels of facilitation and challenge into theatrical programming that connects objects and experiences across the museum to help visitors construct a story of evolution. Project research will focus on the creation of three variants of a theatrical game to test a theoretical framework that describes the game dynamics and facilitation necessary for experiences that support conceptual shifts in visitors' understanding about evolution. This work will take place in four phases, and will be conducted by researchers at the Science Museum of Minnesota with input and review through an external evaluation process. The questions guiding the research are: (1) How, and in what ways, do game design features support conceptual shifts in evolution concepts?; (2) Do player outcomes differ in each game? If so, in what ways?; (3) What other factors (player profile, collaboration, evolution beliefs) influence player outcomes? (4) What are the best practices for facilitating the games and supporting visitors' experiences? The research will contribute to the under-studied field of participatory museum theatre experiences; broaden our understanding of the roles facilitation and gameplay have in informal learning; and help exhibit and program developers make informed choices about the potential of various exhibit components and aligned programming.
DATE: -