Skip to main content

Community Repository Search Results

resource project Media and Technology
The University of California Museum of Paleontology will upgrade two STEM websites that provide free resources for teachers, students, and the public for teaching and learning about evolution and the process of science. The project will allow the museum to respond more effectively to user expectations and enhance the security, functionality, and general appeal of these educational resources. In consultation with expert advisors, the project team will review and revise the content and graphics on the 30 most-accessed, high-content pages of each site to ensure that they reflect the latest research and perspectives in the field. New features will also provide more opportunities for visitor interaction with scientific data. Both front-end and formative evaluation will guide the phases of the project.
DATE: -
TEAM MEMBERS: Anna Thanukos
resource project Public Programs
African American and Latinx youth are often socialized towards athletic activity and sports participation, sometimes at the expense of their exploration of the range of potential career paths including those in the science, technology, engineering, and mathematics (STEM) fields. This project will immerse middle school youth in the rapidly growing world of sports data analytics and build their knowledge of statistics concepts and the data science process. The project will focus on the STEM interests and knowledge development of African American and Latinx youth, an underrepresented and underserved group in STEM. Researchers will explore the ways youths' social identities can and should serve as bridges towards future productive academic and professional identities including those associated with STEM learning and the STEM professions. The outcomes of the project will advance knowledge in promoting elements of informal learning experiences that build adolescents' motivation and persistence for productive participation in STEM courses and careers. This project is funded by the Advancing Informal STEM Learning program (AISL), which seeks to advance new approaches to and evidence-based understanding of the design and development of STEM learning opportunities for the public in informal environments, and the Innovative Technology Experiences for Students and Teachers program (ITEST), which funds projects that leverage innovative uses of technologies to prepare diverse youth for the STEM workforce, with a focus on broadening participation among underrepresented and underserved groups in STEM fields.

Over a three-year period, 250 middle school learners in the West Baltimore, Maryland and Hyattsville, Maryland areas will engage in three main learning activities: Summer Camp (three weeks), Sports Day Saturdays, and a Spring Summit. Through a partnership between the University of Maryland and Coppin State University, the project will utilize resources in multiple departments and units across both universities, and engage with youth sports leagues such as the American Athletic Union (AAU) to support participants' engagement in the data science process including collection of raw data, exploration of data, development of models, visualization, communication, and reporting of data, and data-driven decision making. Furthermore, youth participants will attend local AAU, college, and professional sporting events, and interact with members of coaching staffs to better understand the ways performance data technologies are utilized to inform recruitment and team performance. The mixed-methods research agenda for this project is guided by three main questions: (1) What elements of the project's model are most successful at supporting congruence of adolescents' academic identity, including STEM identity and social identity including athletic identity? (2) What elements support adolescents' motivation, and persistence for productive participation in current and future STEM courses? (3) To what extent did the project appear to influence participants' perceptions of their future professions? At multiple points throughout the experience, participants will complete surveys designed to document and assess statistics and data science knowledge; interest in STEM careers; academic, social and athletic identity development; and STEM course taking patterns. Researchers will also observe project activities, interview a focal group of participants, and survey participants' parents to identify elements of learning experiences that encourage and support adolescents' interest in STEM disciplines and STEM professions. The project team will develop conceptual and pedagogical frameworks that support middle school youth' engagement and interest in science, engineering, technology, and mathematics through repurposing spaces where these youths frequent. A major outcome of the project will be workforce preparation and offers a promising approach for encouraging youth to persist along STEM pathways, which may ultimately result in broadened participation in STEM workforces.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Lawrence Clark Stephanie Timmo Brown
resource project Exhibitions
There is a dearth of prominent STEM role models for underrepresented populations. For example, according to a 2017 survey, only 3.1% of physicists in the United States are Black, only 2.1% are Hispanic, and only 0.5% are Native American. The project will help bridge these gaps by developing exhibits that include simulations of historical scientific experiments enacted by little-known scientists of color, virtual reality encounters that immerse participants in the scientists' discovery process, and other content that allows visitors to interact with the exhibits and explore the exhibits' themes. The project will develop transportable, interactive exhibits focusing on light: how we perceive light, sources of light from light bulbs to stars, uses of real and artificial light in human endeavors, and past and current STEM innovators whose work helps us understand, create, and harness light now. The exhibits will be developed in three stages, each exploring a characteristic of light (Color, Energy, or Time). Each theme will be explored via multiple deliveries: short documentary and animated films, virtual reality experiences, interactive "photobooths," and technology-based inquiry activities. The exhibit components will be copied at seven additional sites, which will host the exhibits for their audiences, and the project's digital assets will enable other STEM learning organizations to duplicate the exhibits. The exhibits will be designed to address common gaps in understanding, among adults as well as younger learners, about light. What light really is and does, in scientific terms, is one type of hidden story these exhibits will convey to general audiences. Two other types of science stories the exhibits will tell: how contemporary research related to light, particularly in astrophysics, is unveiling the hidden stories of our universe; and hidden stories of STEM innovators, past and present, women and men, from diverse backgrounds. These stories will provide needed role models for the adolescent learners, helping them learn complex STEM content while showing them how scientific research is conducted and the diverse community of people who can contribute to STEM innovations and discoveries.

The project deliverables will be designed to present complex physics content through coherent, immersive, and embodied learning experiences that have been demonstrated to promote engagement and deeper learning. The project will research whether participants, through interacting with these exhibits, can begin to integrate discrete ideas and make connections with complex scientific content that would be difficult without technology support. For example, students and other novices often lack the expertise necessary to make distinctions between what is needed and what is extra within scientific problems. The proposed study follows a Design-Based Research (DBR) approach characterized by iterative cycles of data collection, analysis, and reflection to inform the design of educational innovations and advance educational theory. Project research includes conceiving, building, and testing iterative phases, which will enable the project to capture the complexity of learning and engagement in informal learning settings. Research participants will complete a range of research activities, including focus group interviews, observation, and pre-post assessment of science content knowledge and dispositions.

By showcasing such role models and informing about related STEM content, this project will widen perspectives of audiences in informal learning settings, particularly adolescents from groups underrepresented in STEM fields. Research findings and methodologies will be shared widely in the informal STEM learning community, building the field's knowledge of effective ways to broaden participation in informal science learning, and thus increase broaden participation in and preparation for the STEM-based workforce.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Todd Boyette Jill Hamm Janice Anderson Crystal Harden
resource project Media and Technology
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by engaging in hands-on field experience, laboratory/project-based entrepreneurship tasks and mentorship experiences.

Twin Cities Public Television project on Gender Equitable Teaching Practices in Career and Technical Education Pathways for High School Girls is designed to help career and technical education educators and guidance counselors recruit and retain more high school girls from diverse backgrounds in science, technology, engineering and math (STEM) pathways, specifically in technology and engineering. The project's goals are: 1) To increase the number of high school girls, including ethnic minorities, recruited and retained in traditionally male -STEM pathways; 2) To enhance the teaching and coaching practices of Career and Technical Education educators, counselors and role models with gender equitable and culturally responsive strategies; 3) To research the impacts of strategies and role model experiences on girls' interest in STEM careers; 4) To evaluate the effectiveness of training in these strategies for educators, counselors and role models; and 5) To develop training that can easily be scaled up to reach a much larger audience. The research hypothesis is that girls will develop more positive STEM identities and interests when their educators employ research-based, gender-equitable and culturally responsive teaching practices enhanced with female STEM role models. Instructional modules and media-based online resources for Minnesota high school Career and Technical Education programs will be developed in the Twin Cities of Minneapolis and St. Paul and piloted in districts with strong community college and industry partnerships. Twin Cities Public Television will partner with STEM and gender equity researchers from St. Catherine University in St. Paul, the National Girls Collaborative, the University of Colorado-Boulder (CU-Boulder), the Minnesota Department of Education and the Minnesota State Colleges and Universities System.

The project will examine girls' personal experiences with equitable strategies embedded into classroom STEM content and complementary mentoring experiences, both live and video-based. It will explore how these experiences contribute to girls' STEM-related identity construction against gender-based stereotypes. It will also determine the extent girls' exposure to female STEM role models impact their Career and Technical Education studies and STEM career aspirations. The study will employ and examine short-form autobiographical videos created and shared by participating girls to gain insight into their STEM classroom and role model experiences. Empowering girls to respond to the ways their Career and Technical Education educators and guidance counselors guide them toward technology and engineering careers will provide a valuable perspective on educational practice and advance the STEM education field.
DATE: -
TEAM MEMBERS: Rita Karl Brenda Britsch Siri Anderson
resource project Professional Development, Conferences, and Networks
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The theme of this conference project by the New York Hall of Science will be exploring how to better design exhibits to promote "public engagement with science." Here, "public engagement with science" refers to opportunities that go beyond traditional approaches to the public understanding of science. The event will invite professionals to consider how to shift exhibit designs toward engaging visitors with STEM in ways that emphasize the intersection of STEM innovation with visitors' daily lives, their personal agency, and their interdependence with their personal social networks and the institutions that advance STEM knowledge and innovation. The conference and its pre- and post-conference activities will bring together curators, exhibition developers, community outreach professionals, museum administrators, and learning scientists from the United States and Canada. They will work together to identify design principles and key obstacles to designing exhibits that can better help science museums achieve two goals: 1) making visitors' diverse and personal questions, concerns, and perspectives central to their experience of the exhibits; and 2) engaging visitors as contributors to the exhibit experience in ways that make their contributions visible and consequential. During this two-day event attendees will consider how exhibits can support broader and more diverse public participation in critical debates about the roles of STEM discovery and innovation in society. The effort is grounded in recent work on public engagement with science; on reorganizing museums to become sites for participation and contribution by visitors, and particularly by institutions' local communities; and on making and engineering design programming within museums. The goal is to chart a course toward a vision of the future of science museums in which they maintain their status as sources of trusted information, while also fulfilling their potential as sites of genuine participation and social interaction, in which visitors make meaningful contributions to the substance and workings of the museum floor while also engaging with, learning about and holding themselves accountable to the core concepts and practices of the STEM disciplines. The conference will build the capacity and collaborative engagement of a network of science centers whose work is central to achieving the museum field's ultimate goal of engaging the public of all ages in learning STEM in informal environments. The conference and associated activities will be evaluated by staff at the New York Hall of Science, with oversight by an external advisory committee of research and development professionals. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Informal/Formal Connections
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Museum of Science, Boston (MOS) and Boston University (BU) will conduct a Pilot and Feasibility Study project that leverages the current Living Laboratory (LL) model and expand it to engage high school students (teens) in experimental psychology research, science communication and science education activities. In LL, which is now an extensive network of museums and university researchers across the country, scientists and museum staff collaborate to engage children in studies on the museum floor and educate caregivers about the research. Multi-site implementation and evaluation of LL has also documented positive impacts for undergraduate researchers. Many sites are eager to extend these benefits to high school students by engaging them as practitioners within the model and by providing them with opportunities to engage in current research, education and communication, thereby helping to foster stronger youth identities with science and its applications in society. This project expands a ten-year LL partnership between MOS and BU to: 1) pilot a program in which high school students both conduct scientific research and engage the public in learning about science; 2) explore strategies for museums and universities to collaboratively engage, support and mentor high school students in science research, communication and education activities; 3) document curricular, other programmatic, and evaluation materials; and 4) convene professional participants to provide feedback on pilot materials, and assess the viability of implementing similar programs at additional sites. Guided by developmental evaluation, these activities will generate knowledge for the field, and act to increase professional capacity to integrate experiences for teens at multiple LL sites in future projects. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Becki Kipling Peter Blake Rachel Fyler Katie Todd Ian Campbell Tess Harvey Owen Weitzman Allison Anderson
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This exploratory Pilot study project brings together a diverse set of partners that include the Watertown Children's Theatre (WCT) which is west of Boston, and, from Boston College a team of science educators, learning science researchers, and positive youth development experts. The goal is to design and develop a project for middle school-aged youth. The pilot project, which integrates hands-on science learning experiences, experiments, and field trips with the student-led production of short plays, will engage youth in expressing their beliefs, passions, and their own identities about STEM by examining how the intersection of skills and practices used in both domains (science and theatre) can enable them to learn about science concepts, principles and methods as well as to develop science-focused identities. Middle-school youth will be engaged in a three-week summer program where they will be led by science teachers, playwrights, and high school students to conduct hands-on investigations in science in conjunction with developing original, ten-minute plays around a specific scientific theme relevant to their life experience, for example, the potential impact on their lives of heavy metals in water and poor air quality. After a science theme is chosen, the principal investigators will identify the big ideas that are important for youth to understand and be able to explain. Upon identification of the key science ideas, youth will then engage in pertinent science activities, visits to local sites, reading current news articles and then in identifying the local impacts and how the underlying science relates to those local impacts. The youth will perform their ten-minute plays at the end of the summer program. Following this showcase event, they will engage in additional science learning experiences and also revise their productions throughout the academic year in preparation for a youth science festival, where their creations will be performed by professional adult actors as a part of the Cambridge Science Festival taking place in the spring. The broader impact of the work focuses on broadening participation in STEM, specifically, the engagement of youth from under-represented populations in the sciences, such as African-Americans, Latinxs, and women with partner Boston Public Schools. The Pilot study will investigate the student learning and organizational dimensions of the model being developed.

The Boston College researchers will study youth's sense of purpose and identity toward science, particularly how youth's identity discrepancy changes through participation in the project. The work places youth voice at the center of the creation of STEM-based theatre plays. The theoretical foundation of the work is grounded in part in the concept of "path to purpose." The major research questions are: How do youth perceptions (interest, science anxiety, identity) toward science shift as they participate in the project? What is the residual impact on parents (family members) and youth on their discussions about science, and how does participation in the project impact those discussions? Research methods include surveys, interviews and observations. The external evaluation study will focus on understanding project implementation and progress toward meeting the project goals, in particular, how well the initiative works to establish a model for the informal STEM learning field that the team and others can apply beyond the Pilot study.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Meghan Hill
resource project Media and Technology
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.

In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).

Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
DATE: -
resource project K-12 Programs
The LiFE Project, an NSF INCLUDES Design and Development Launch Pilot, will investigate and design a collaborative effort to counter the stereotypical expectation that boys are "naturally" better at science and math which becomes a self-fulfilling prophecy, silently shaping the girls'own perceptions of their ability. LiFE collaborators will address this problem at its source: the early learning experiences of elementary school girls. The elementary-middle school period is critical because by 8th grade, many girls have left the STEM pathway forever. The key to reversing the trend is finding effective ways to showcase STEM as a collaborative, people-rich space in which girls can participate together, be themselves, and engage in exploration. Research indicates that girls prefer collaborative activities that can make a difference in the world. Partnering with a coalition of economically and racially diverse New Jersey elementary schools, LiFE will employ "iSTEAM" learning strategies that encourage girls to apply the tools of various disciplines to investigate and solve real-world problems in an open environment of innovation, collaboration, and communication. This approach promises to be especially effective in engaging girls.

LiFE will build on a successful Girls Science Club (GSC) model that introduces girls in grades 3-4 to hands-on iSTEAM exploration activities using Problem/Project-Based Learning strategies. Additional activities will leverage the expertise of the project's corporate/government partners (including Apple and USARMY) to build communication and leadership skills. LiFE will sustain the GSC's benefits by developing clubs for grades 5-6 involving enriched content and long-term independent projects. Eventually, a tiered peer network will link girls from elementary school through women college students and female STEM professionals--each tier mentoring the tiers below. This network will sustain a crucial "sense of community" to retain women in STEM. Within LiFE's social innovation framework approach, participating districts will tailor the GSC to their community while also working together toward shared common goals. LiFE will study the impact of GSCs on persistence of girls' interest in STEM into grade 7. Based on this research, LiFE will develop a cost-effective template that can be replicated across the US. LiFE will bring problem-based iSTEAM concepts to girls of all academic levels in their elementary schools years while, having a community focus with participant-developed projects in a non-competitive environment and leveraging the resources of academic, corporate and government partners to foster broader participation by women in STEM careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Bruce Bukiet James Lipuma Nancy Steffen-Fluhr
resource project Exhibitions
As the world is increasingly dependent upon computing and computational processes associated with data analysis, it is essential to gain a better understanding of the visualization technologies that are used to make meaning of massive scientific data. It is also essential that the infrastructure, the very means by which technologies are developed for improving the public's engagement in science itself, be better understood. Thus, this AISL Innovations in Development project will address the critical need for the public to learn how to interpret and understand highly complex and visualized scientific data. The project will design, develop and study a new technology platform, xMacroscope, as a learning tool that will allow visitors at the Science Museum of Minnesota and the Center of Science and Industry, to create, view, understand, and interact with different data sets using diverse visualization types. The xMacroscope will support rapid research prototyping of public experiences at selected exhibits, such as collecting data on a runner's speed and height and the visualized representation of such data. The xMacroscope will provide research opportunities for exhibit designers, education researchers, and learning scientists to study diverse audiences at science centers in order to understand how learning about data through the xMacroscope tool may inform definitions of data literacy. The research will advance the state of the art in visualization technology, which will have broad implications for teaching and learning of scientific data in both informal and formal learning environments. The project will lead to better understanding by science centers on how to present data to the public more effectively through visualizations that are based upon massive amounts of data. Technology results and research findings will be disseminated broadly through professional publications and presentations at science, education, and technology conferences. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project is driven by the assumption that in the digital information age, being able to create and interpret data visualizations is an important literacy for the public. The research will seek to define, measure, and advance data visualization literacy. The project will engage the public in using the xMacrocope at the Science Museum of Minnesota and at the Center of Science and Industry's (COSI) science museum and research center in Columbus, Ohio. In both museum settings the public will interact with different datasets and diverse types of visualizations. Using the xMacroscope platform, personal attributes and capabilities will be measured and personalized data visualizations will be constructed. Existing theories of learning (constructivist and constructionist) will be extended to capture the learning and use of data visualization literacy. In addition, the project team will conduct a meta-review related to different types of literacy and will produce a definition with performance measures to assess data visualization literacy - currently broadly defined in the project as the ability to read, understand, and create data visualizations. The research has potential for significant impact in the field of science and technology education and education research on visual learning. It will further our understanding of the nature of data visualization literacy learning and define opportunities for visualizing data in ways that are both personally and culturally meaningful. The project expects to advance the understanding of the role of personalization in the learning process using iterative design-based research methodologies to advance both theory and practice in informal learning settings. An iterative design process will be applied for addressing the research questions by correlating visualizations to individual actions and contributions, exploring meaning-making studies of visualization construction, and testing the xMacroscope under various conditions of crowdedness and busyness in a museum context. The evaluation plan is based upon a logic model and the evaluation will iteratively inform the direction, process, and productivity of the project.
DATE: -
TEAM MEMBERS: Katy Borner Kylie Peppler Bryan Kennedy Stephen Uzzo Joe E Heimlich
resource project Public Programs
Public Participation in Scientific Research (PPSR), often referred to as crowdsourcing or citizen science, engages participants in authentic research, which both advances science discovery as well as increases the potential for participants' understanding and use of science in their lives and careers. This four year research project examines youth participation in PPSR projects that are facilitated by Natural History Museums (NHMs). NHMs, like PPSR, have a dual focus on scientific research and science, technology, engineering, and mathematics (STEM) education. The NHMs in this project have established in-person and online PPSR programs and have close ties with local urban community-based organizations. Together, these traits make NHMs appropriate informal learning settings to study how young people participate in PPSR and what they learn. This study focuses on three types of PPSR experiences: short-term outdoor events like bioblitzes, long-term outdoor environmental monitoring projects, and online PPSR projects such as crowdsourcing the ID of field observations. The findings of this study will be shared through PPSR networks as well as throughout the field in informal STEM learning in order to strength youth programming in STEM, such that youth are empowered to engage in STEM research and activities in their communities. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.

The study employs observations, surveys, interviews, and learning analytics to explore three overarching questions about youth learning: 1) What is the nature of the learning environments and what activities do youth engage in when participating in NHM-led PPSR? 2) To what extent do youth develop three science learning outcomes, through participation in NHM-led citizen science programs? The three are: a) An understanding of the science content, b) identification of roles for themselves in the practice of science, and c) a sense of agency for taking actions using science? 3) What program features and settings in NHM-led PPSR foster these three science learning outcomes among youth? Based on studies occurring at multiple NHMs in the US and the UK, the broader impact of this study includes providing research-based recommendations for NHM practitioners that will help make PPSR projects and learning science more accessible and productive for youth. This project is collaboration between education researchers at University of California, Davis and Open University (UK), and Oxford University (UK) and citizen science practitioners, educators, and environmental scientists at three NHMs in the US and UK: NHM London, California Academy of Sciences, and NHM Los Angeles.
DATE: -
TEAM MEMBERS: Heidi Ballard Lila Higgins Alison Young
resource project Media and Technology
The widespread accessibility of live streaming video now makes it possible for viewers around the world to watch live events together, including unprecedented, 24/7 views of wildlife. In addition, online technologies such as live chatting and forums have opened new possibilities for people to collaborate from locations around the world. The innovation that the projects provide is bringing these opportunities together, enabling real-time research and discussion as participants observe and annotate live streaming footage; sharing questions and insights through live Q&A sessions; and explore data with interactive visualization tools. Scientists will support the community's research interests, in contrast with traditional models of citizen science in which communities support the work of scientists. This project will enable people from diverse backgrounds and perspectives to co-create scientific investigations, including participants who might not otherwise have access to nature. The evaluation research for this project will advance the understanding of practices that enable interconnected communities of people to participate in more phases of scientific discovery, and how participation affects their learning outcomes. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of science, technology, engineering, and mathematics (STEM) learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. As such, this project will advance a new genre of Public Participation in STEM Research (PPSR). It will also advance scientific exploration using live wildlife cams and establish a database for long-term research to understand how bird behavior and reproductive success are affected by environmental change. This project aims to deepen public involvement in science, building on knowledge and relevance for STEM learning by creating an online learning environment that expands on traditional crowdsourcing models of PPSR in which participants collect data to answer questions driven by scientists. In this project, participants are involved in co-created research investigations, including asking questions, deciding what data are needed, generating data, looking for patterns, making interpretations, reviewing results, and sharing findings. The goals are to 1) create a system that involves the public more deeply in scientific research; 2) develop participants' science skills and interests; 3) increase participants' understanding of birds and the environment; 4) generate new scientific knowledge about wildlife; and 5) advance the understanding of effective project design for co-created PPSR projects at a national scale. Through iterative design and evaluation, the project will advance the understanding of the conditions that foster online collaboration and establish design principles for supporting science and discovery in online learning environments. Through scaling and quasi-experimental studies, the evaluation research will advance the understanding of how learning outcomes may be similar or different for participants engaging in different ways, whether they observe the cams and read about the investigation, process data as contributors, provide some input as collaborators, or join in most or all of the scientific process as co-creators. Despite the popularity of live wildlife cams, with millions of people watching hundreds of cams around the world, little research has been conducted on the use of live cams for collaborative work in formal or informal science education. The infrastructure and open-source framework created for this project will expand the capacity for online communities of people from diverse career backgrounds and perspectives to collaborative on solving personally meaningful questions and contribute to new knowledge. Using this project as a prototype, cam operators from around the world could build networks of cams, enabling future studies with broader scope for comparative biological studies and discoveries. Additionally, it will serve as a model for use in classrooms or for online communities exploring other scientific fields using live-streaming content in collaborative research. By involving scientists and participants from across society as collaborators and co-creators, this project can help increase public engagement with science, technology, and environmental stewardship while advancing the understanding of the natural world and informing public decision-making.
DATE: -
TEAM MEMBERS: Miyoko Chu David Bonter Tina Phillips