Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
This three-year project focuses on professional research experiences for middle and high school STEM teachers through investigations of the Great American Biotic Interchange (GABI). Each year 10 teachers (in diverse fields including biology, chemistry, earth and environmental sciences, and oceanography) and three to five professional paleontologists will participate in a four-phase process of professional development, including: a (1) pre-trip orientation (May); (2) 12 days in Panama in July collecting fossils from previously reported, as well as newly discovered, sites; (3) a post-trip on-line (cyber-enabled) Community of Practice; and (4) a final wrap-up at the end of each cohort (December). In addition, some of the teachers may also elect to partner with scientists in their research laboratories, principally located in California, Florida, and New Mexico. The partners in Panama are from the Universidad Autónoma de Chiriquí (UNACHI), including faculty and students, as well as STEM teachers from schools in Panama. Teachers that participate in this RET will develop lesson plans related to fossils, paleontology, evolution, geology, past climate change, and related content aligned with current STEM standards.

The GABI, catalyzed by the formation of the Isthmus of Panama during the Neogene, had a profound effect on the evolution and geography of terrestrial organisms throughout the Americas and marine organisms globally. For example, more than 100 genera of terrestrial mammals dispersed between the Americas, and numerous marine organisms had their interoceanic distributions cut in half by the formation of the Isthmus. Rather than being considered a single event that occurred about 4 million years ago, the GABI likely represents a series of dispersals over the past 10 million years, some of which occurred before full closure of the Isthmus. New fossil discoveries in Panama resulting from the GABI RET (Research Experiences for Teachers) are thus contributing to the understanding of the complexity and timing of the GABI during the Neogene.

This award is being co-funded with the Office International and Integrative Activities.
DATE: -
TEAM MEMBERS: Bruce MacFadden
resource project Media and Technology
The Computational Thinking in Ecosystems (CT-E) project is funded by the STEM+Computing Partnership (STEM+C) program, which seeks to advance new approaches to, and evidence-based understanding of, the integration of computing in STEM teaching and learning. The project is a collaboration between the New York Hall of Science (NYSCI), Columbia University's Center for International Earth Science Information Network, and Design I/O. It will address the need for improved data, modeling and computational literacy in young people through development and testing of a portable, computer-based simulation of interactions that occur within ecosystems and between coupled natural and human systems; computational thinking skills are required to advance farther in the simulation. On a tablet computer at NYSCI, each participant will receive a set of virtual "cards" that require them to enter a computer command, routine or algorithm to control the behavior of animals within a simulated ecosystem. As participants explore the animals' simulated habitat, they will learn increasingly more complex strategies needed for the animal's survival, will use similar computational ideas and skills that ecologists use to model complex, dynamic ecological systems, and will respond to the effects of the ecosystem changes that they and other participants elicit through interaction with the simulated environment. Research on this approach to understanding interactions among species within biological systems through integration of computing has potential to advance knowledge. Researchers will study how simulations that are similar to popular collectable card game formats can improve computational thinking and better prepare STEM learners to take an interest in, and advance knowledge in, the field of environmental science as their academic and career aspirations evolve. The project will also design and develop a practical approach to programing complex models, and develop skills in communities of young people to exercise agency in learning about modeling and acting within complex systems; deepening learning in young people about how to work toward sustainable solutions, solve complex engineering problems and be better prepared to address the challenges of a complex, global society.

Computational Thinking in the Ecosystems (CT-E) will use a design-based study to prototype and test this novel, tablet-based collectable card game-like intervention to develop innovative practices in middle school science. Through this approach, some of the most significant challenges to teaching practice in the Next Generation Science Standards will be addressed, through infusing computational thinking into life science learning. CT-E will develop a tablet-based simulation representing six dynamic, interconnected ecosystems in which students control the behaviors of creatures to intervene in habitats to accomplish goals and respond to changes in the health of their habitat and the ecosystems of which they are a part. Behaviors of creatures in the simulation are controlled through the virtual collectable "cards", with each representing a computational process (such as sequences, loops, variables, conditionals and events). Gameplay involves individual players choosing a creature and habitat, formulating strategies and programming that creature with tactics in that habitat (such as finding food, digging in the ground, diverting water, or removing or planting vegetation) to navigate that habitat and survive. Habitats chosen by the participant are part of particular kinds of biomes (such as desert, rain forest, marshlands and plains) that have their own characteristic flora, fauna, and climate. Because the environments represent complex dynamic interconnected environmental models, participants are challenged to explore how these models work, and test hypotheses about how the environment will respond to their creature's interventions; but also to the creatures of other players, since multiple participants can collaborate or compete similar to commercially available collectable card games (e.g., Magic and Yu-Go-Oh!). NYSCI will conduct participatory design based research to determine impacts on structured and unstructured learning settings and whether it overcomes barriers to learning complex environmental science.
DATE: -
TEAM MEMBERS: Stephen Uzzo Robert Chen
resource project Media and Technology
Education stakeholders from advocates to developers are increasingly recognizing the potential of science games in advancing student academic motivation for and interest in science and science careers. To maximize this potential, the project will use science games (e.g. Land Science, River City, and EcoMUVE), shown to be enjoyable to students and proven to promote student learning in science at the middle school level. Through a two-phase process, games will be used as vehicles for learning about ways to change how students think about science and potentially STEM careers. The goal of the intervention is to explore which processes and design features of science games will actually help students move beyond a temporary identity of being a scientist or engineer (as portrayed while playing the game) to one where students began to see themselves in real STEM careers. Students' participation will be guided by teams of teachers, faculty members, and graduate students from Drexel University and a local school. All science students attending the local inner city middle school in Philadelphia, PA, will participate in the intervention.

Using an exploratory mixed-method design, the first two years of the project will focus on exploring, characterizing, coding, and analyzing data sets from three large games designed to help students think about possible careers in science. During year 3, the project will integrate lessons learned from the first two years into the existing middle school science curriculum to engage students in a one-year intervention using PCaRD (Play Curricular activity Reflection Discussion). During the intervention, the PI will work with experts from Drexel University and a local school to collect data on the design features of Land Science to capture identity change in the science identity of the participating students. Throughout the course of year 3, the PI will observe, video, interview, survey, and use written tasks to uncover if the Land Science game is influencing students' identity in any way (from a temporary to a long-term perspective about being a scientist or engineer). Data collected during three specified waves during the intervention will be compared to analyses of existing logged data through collaborations with researchers at Harvard University and the University of Wisconsin-Madison. These comparisons will focus on similar middle-aged science students who used the same gaming environments as the students involved in this study. However, the researcher will intentionally look for characteristics related to motivation, science knowledge, and science identity change.

This project will integrate research and education to investigate learning as a process of change in student science identity within situated environmental contexts of digital science gameplay around curricular and learning activities. This integrated approach will allow the researcher to explore how gaming is inextricably linked to the student as an individual while involved in the learning of domain specific content in science. The collaboration among major university and school partners; the expertise of the researcher in educational psychology, educational technology, and science games; and the project's advisory board makes this a real-life opportunity for the researcher to use information that naturally exists in games to advance knowledge in the field about the value of gaming to changing students' science identities. It also responds to reports by the National Research Council committee on science learning and computer games, which identifies games as having the potential to catalyze new approaches to science learning.
DATE: -
TEAM MEMBERS: Aroutis Foster
resource project Public Programs
Our goal is to attempt the identification of Sevengill sharks (Notorynchus cepedianus) that may be returning to San Diego from year-to-year, using the pattern recognition algorithm provided in ‘Wildbook,’ a web-based application for wildlife data management, designed by Jason Holmberg. 'Wildbook' which has been successfully used to ID Whale Sharks (Rhincodon typus ) by their spotting patterns.

Sevengill sharks (Notorynchus cepedianus), are currently listed as Data deficient (DD) on the IUCN Red List: "This assessment is based on the information published in the 2005 shark status survey (Fowler et al. 2005).
DATE: -
TEAM MEMBERS: Heather Moncrief Michael Bear
resource project Media and Technology
This project will research factors influencing the implementation of programs designed to increase diverse participation in informal science. The goal is to provide the informal science education field with information and tools that will help them design effective programs that more effectively engage a broad range of diverse audiences. The project has two major components. First, the project will research the implementation of a citizen science project, Celebrate Urban Birds (CUB), in major U.S. cities. Citizen science projects involve public volunteers in gathering scientifically valid data as part of ongoing research. Second, building on results of the research, the project will launch a website and learning community (called a Community of Practice or CoP) supporting informal science educators that are involved in designing and implementing informal science programs with an emphasis on engaging diverse participants. The project will be lead by the Cornell Lab of Ornithology (CLO), a leader in designing and researching citizen science projects, in collaboration with the Association of Science-Technology Centers (ASTC) and five science center members of ASTC, where the CUB program will be implemented and researched. The objective of the research is to better understand contextual factors and how they impact implementation even when accepted practices are followed. Such research is key not only to revealing accepted practices but also to understanding how projects are implemented in the face of concrete operational, cultural, economic, and demographic variables. The research will use a comparative case study approach, which is designed for studies requiring holistic, in-depth investigation. The development of the website and the CoP will be guided by a Network Improvement Strategy, a research-based approach to designing educational CoPs. The development of the CoP will involve the project stakeholders including the informal science organization practitioners, community organization representatives, CUB staff, ASTC staff, advisors and consultants. This strategy will allow the project team and pilot sites to leverage their diverse experiences and skill sets to improve practice; provide space for researchers and practitioners to work together as partners; and develop a nuanced set of strategies that can be implemented across a variety of organizational contexts.
DATE: -
resource project Informal/Formal Connections
Project TRUE (Teens Researching Urban Ecology) was a summer research experience for New York City youth that focused on strengthening their STEM interest, skills, and ultimately, increasing diversity in STEM fields. Through a partnership between an informal science institution (the Wildlife Conservation Society) and a university (Fordham University), 200 high school students conducted urban ecology research at one of four zoos in New York City under the guidance of STEM mentors. A unique feature of Project TRUE was its near-peer mentorship model, in which university professors mentored graduate urban ecology students, who mentored undergraduate students, who mentored high school students Science research projects focused on urban ecology topics, with high school students identifying their own research questions that were nested within the undergraduate mentor’s larger research question, thereby establishing a sense of ownership. Youth collected and analyzed their own data and the experience culminated in the creation of research posters, with teams presenting their posters to the public at a student science symposium.

This project was funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. We studied the impacts of two key parts of the program – conducting authentic science research and near-peer mentorship – on the STEM trajectories of almost 200 high school students who participated in the program from 2015 to 2018. The research explored short-term outcomes immediately after the program and followed up with students multiple years after participation to understand the medium-term impacts of the experience during and after the transition from high school to college.
DATE: -
TEAM MEMBERS: Karen Tingley Jason Aloisio Su-Jen Roberts J. Alan Clark Jason Munshi-South J.D. Lewis
resource project Public Programs
Pipeline for Remote Sensing Education and Application (PRSEA), will increase awareness, knowledge and understanding of remote sensing technologies and associated disciplines, and their relevance to NASA, through a combination of activities that build a “pipeline” to STEM and remote sensing careers, for a continuum of audiences from third grade through adulthood. This program will be led by Pacific Science Center. The first objective is to engage 50 teens from groups underrepresented in STEM fields in a four-year career ladder program; participants will increase knowledge and understanding of remote sensing as well as educational pathways that lead to careers in remote sensing fields at NASA and other relevant organizations. The second objective is to serve 2,000 children in grades 3-5, in a remote sensing-based out-of school time outreach program that will increase the participant’s content knowledge of remote sensing concepts and applications and awareness and interest in remote sensing disciplines. PRSEA’s third objective is to engage 180 youth, grades 6-8, in remote sensing-themed summer intensive programs through which youth will increase knowledge of remote sensing concepts and applications and increase awareness and interest in educational and career pathways associated with remote sensing and NASA’s role in this field. The final objective is to engage 10,000 visitors of all ages with a remote sensing-themed Discovery Cart on Pacific Science Center’s exhibit floor. By engaging in cart activities, we anticipate visitors will increase their level of awareness and interest in the topic of remote sensing and NASA’s role in contributing to this field.
DATE: -
TEAM MEMBERS: Ellen Lettvin
resource project Public Programs
The Advancing Informal STEM Learning (AISL) program funds innovative projects in a variety of informal settings. The iSWOOP project aims to equip National Park Service interpretive rangers with visualizations and interactive approaches for communicating science in natural learning spaces. An advantage to locating STEM learning in national parks is that they serve as America’s outdoor laboratories, hosting thousands of research studies annually. Dynamic changes in the landscape, wildlife, and interspecies interactions offer countless avenues for inquiry. The project will build collaborations between park-based scientists, whose work frequently happens out of the public eye, and interpreters, who interact with millions of visitors annually. Based on pilot studies done at Carlsbad Caverns National Park, the researchers have extended this work to four more national park units, each with its own natural resources and research. Partners in this endeavor include Winston-Salem State University, Institute for Learning Innovation, and TERC. This project's goal is to establish a model for how national parks can be resources for science education and learning.

iSWOOP works by providing interpretive rangers with professional development. iSWOOP coordinates 1) opportunities for interpreters and scientists to work together in a classroom setting and in the field; 2) creates compelling visualizations, which can function as a jumping off point for conversations about the methods and relevance of park-based research; 3) ongoing opportunities for interpretive rangers to reflect on interactions with visitors and to experiment with questions that spark visitors’ curiosity in the moment and interest long-term.

The main goal of this proposed effort is to translate park-based research endeavors and results from the scientists to the park visitors in ways that make the process enjoyable, informative, and thought-provoking. Evaluation elements will be included every step in this process in order to not only determine if learning has occurred but also how effectively the science has been translated.
DATE: -
resource project Exhibitions
Ocean science is important for the public to understand as the impact of water as a resource has become more significant in recent years. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings including rural communities. This project's goals are to educate rural communities and youth about ocean science via setting up exhibits in unique venues such as parks, parking lots and at community gatherings as well as in local libraries. Local library staff and Girl Scouts will assist the investigators in operationalizing the community activities. The project is a collaboration between the Consortium for Leadership, Inc., Rutgers University, the University of Hawaii, Ashland University, the College of Exploration, the Girl Scout organization and some of its affiliates, the Rural Library Education Network, local museums, and the Texas State Aquarium. This project will experiment with a new style of presentation called "Pop up" which brings in exhibits that are rapidly and easily set up in unconventional venues such as parks to get the communities' attention. From among the visitors attending the "Pop up" sessions, the organizers will invite those who have shown interest to attend deeper discussions of ocean science at the local library. This deeper discussion, referred to as "Drill down", will involve scientists commenting from a research ship on their research activities. Cores from the ocean floor will be used to educate attendees about the history of the planet. Locations of the project venues will include rural communities that have a high population of underserved citizens. Research questions to be investigated are: 1. Do the "Pop up" and "Drill down" exercises create an effective and sustainable model for STEM (science, technology, engineering, and mathematics) learning? 2. How does the "Pop up/Drill down" methodology meet the needs of partner informal science education institutions such as the libraries and Girl Scouts in fulfilling their own missions? 3. What is the impact of these sessions on increasing awareness and knowledge of ocean and earth science, technology, and the work of scientists/engineers?
DATE: -
TEAM MEMBERS: Sharon Cooper Kevin Johnson Carrie Ferraro Katerina Petronotis
resource project Media and Technology
This project engages members of racially and economically diverse communities in identifying and carrying out environmental projects that are meaningful to their lives, and adapts technology known as NatureNet to assist them. NatureNet, which encompasses a cell phone app, a multi-user, touch-based tabletop display and a web-based community, was developed with prior NSF support. Core participants involved in programs of the Anacostia Watershed Society in Washington, D.C., and Maryland, and the Reedy Creek Nature Preserve in Charlotte, NC, will work with naturalists, educators, and technology specialists to ask scientific questions and form hypotheses related to urban waterway restoration and preservation of native species. They will then collect and analyze data using NatureNet, requesting changes to the technology to customize it as needed for their projects. Casual visitors to the nature centers will be able to interact with the environmental projects via the tabletop, and those who live farther away will be able to participate more peripherally via the online community. The research project, led by researchers from the University of Maryland, College Park, with collaborators from the University of North Carolina, Charlotte, and the University of Colorado, Boulder, will provide answers to two questions: 1) How do community-driven informal environmental learning projects impact participants, including their motivation to actively participate in science issues via technology and their disposition toward nature preserves and scientific inquiry? and 2) What are the key factors (e.g., demographic composition of participants, geographical location) that influence the development of community-driven environmental projects? Researchers will gather extensive qualitative and quantitative data to understand how community projects are selected and carried out, how participants approach technology use and adaptation, and how informal learning and engagement on STEM-related issues can be fostered over a period of several months and through iterative project cycles. Data will be collected through motivation questionnaires; focus groups; interviews; tabletop, mobile, and website interaction logs; field notes from participatory design and reflection sessions; and project journals kept by nature preserve staff. Through extensive research, iterative design, and evaluation efforts, researchers will develop an innovative model for community-driven environmental projects that will deepen informal science education by demonstrating how members of diverse communities connect environmental knowledge and scientific inquiry skills to the practices, values, and goals of their communities, and how technology can be used to facilitate such connections.
DATE: -
TEAM MEMBERS: Tom Yeh Mary Lou Maher Jennifer Preece Tamara Clegg Carol Boston