Skip to main content

Community Repository Search Results

resource research Public Programs
This year marks the 50th anniversary of the founding of the Exploratorium, the self-described "museum of science, art and human perception," in San Francisco, California and the 10th anniversary of the launching of the National Research Council/National Academy of Sciences, Engineering and Medicine report Learning Science in Informal Environments: People, Places and Pursuits. The moment offered me an opportunity to reflect on my own professional journey, which began at the Exploratorium, coincided with a growth spurt of field knowledge-building and has included experiences that inform how I
DATE:
TEAM MEMBERS: James Bell
resource project Media and Technology
This project had three objectives to build knowledge with respect to advancing Informal STEM Education:


Plan, prototype, fabricate, and document a game-linked design-and-play STEM exhibit for multi-generational adult-child interaction utilizing an iterative exhibit design approach based on research and best practices in the field;
Develop and disseminate resources and models for collaborative play-based exhibits to the informal STEM learning community of practice of small and mid-size museums including an interactive, tangible tabletop design-and-play game and a related tablet-based game app for skateboarding science and technology design practice;
Conduct research on linkages between adult-child interactions and game-connected play with models in informal STEM learning environments.


Linked to these objectives were three project goals:


Develop tools to enable children ages 5-8 to collaboratively refine and test their own theories about motion by exploring fundamental science concepts in linked game and physical-object design challenge which integrates science (Newton’s Laws of Motion) with engineering (iterative design and testing), technology (computational models), and mathematics (predictions and comparisons of speed, distance, and height). [Linked to Objectives 1 & 3]
Advance the informal STEM education field’s understanding of design frameworks that integrate game environments and physical exhibit elements using tangibles and playful computational modeling and build upon the “Dimensions of Success” established STEM evaluation models. [Linked to Objectives 1 & 2]
Examine methods to strengthen collaborative learning within diverse families through opportunities to engage in STEM problem-based inquiry and examine how advance training for parents influences the extent of STEM content in conversations and the quality of interactions between caregivers and children in the museum setting. [Linked to Objectives 1 & 3]


The exhibit designed and created as a result of this grant project integrates skateboarding and STEM in an engaging context for youth ages 5 to 8 to learn about Newton’s Laws of Motion and connect traditionally underserved youth from rural and minority areas through comprehensive outreach. The exhibit design process drew upon research in the learning sciences and game design, science inquiry and exhibit design, and child development scholarship on engagement and interaction in adult-child dyads.

Overall, the project "Understanding Physics through Collaborative Design and Play: Integrating Skateboarding with STEM in a Digital and Physical Game-Based Children’s Museum Exhibit" accomplished three primary goals. First, we planned, prototyped, fabricated, and evaluated a game-linked design-and-play STEM gallery presented as a skatepark with related exhibits for adult-child interaction in a Children's Museum.

Second, we engaged in a range of community outreach and engagement activities for children traditionally underserved in Museums. We developed and disseminated resources for children to learn about the physics of the skatepark exhibit without visiting the Museum physically. For example, balance board activities were made portable, the skatepark video game was produced in app and web access formats, and ramps were created from block sets brought to off-site locations.

Third, we conducted a range of research to better understand adult-child interactions in the skatepark exhibit in the Children's Museum and to explore learning of physics concepts during physical and digital play. Our research findings collectively provide a new model for Children's Museum exhibit developers and the informal STEM education community to intentionally design, evaluate, and revise exhibit set-up, materials, and outcomes using a tool called "Dimensions of Success (DOS) for Children's Museum Exhibits." Research also produced a tool for monitoring the movement of children and families in Museum exhibit space, including time on task with exhibits, group constellation, transition time, and time in gallery. Several studies about adult-child interactions during digital STEM and traditional pretend play in the Museum produced findings about social positioning, interaction style, role, and affect during play.
DATE: -
TEAM MEMBERS: Deb Dunkhase Kristen Missall Benjamin DeVane
resource research Media and Technology
STEM Pathways is a collaboration between five Minnesota informal STEM (science, technology, engineering, and mathematics) education organizations—The Bakken Museum, Bell Museum of Natural History, Minnesota Zoo, STARBASE Minnesota, and The Works Museum—working with Minneapolis Public Schools (MPS) and advised by the Minnesota Department of Education. STEM Pathways (logo shown in Figure 1) aims to provide a deliberate and connected series of meaningful in-school and out-of-school STEM learning experiences to strengthen outcomes for students, build the foundation for a local ecosystem of STEM
DATE:
TEAM MEMBERS: Steven Walvig Beth Murphy Melanie Peters Abby Moore
resource research Public Programs
These posters about the Nanoscale Informal Science Education Network were presented at the 2014 AISL PI Meeting in Washington, DC.
DATE:
TEAM MEMBERS: Museum of Science, Boston Vrylena Olney
resource research Public Programs
The requirement by the National Science Foundation (NSF) that research proposals include plans for "broader impact" activities to foster connections between Science, Technology, Engineering, and Math (STEM) research and service to society has been controversial since it was first introduced. A chief complaint is that the requirement diverts time and resources from the focus of research and toward activities for which researchers may not be well prepared. This paper describes the theoretical framework underlying a new strategy to pair NSF-funded nano research centres with science museums in
DATE:
TEAM MEMBERS: Museum of Science, Boston Carol Lynn Alpert
resource project Public Programs
This Nanoscale Science and Engineering Center (NSEC) is a collaboration among Harvard University, the Massachusetts Institute of Technology, the University of California—Santa Barbara, and the Museum of Science—Boston with participation by Delft University of Technology (Netherlands), the University of Basel (Switzerland), the University of Tokyo (Japan), and the Brookhaven, Oak Ridge, and the Sandia National Laboratories. The NSEC combines "top down" and "bottom up" approaches to construct novel electronic and magnetic devices with nanoscale sizes and understand their behavior, including quantum phenomena. Through a close integration of research, education, and public outreach, the Center encourages and promotes the training of a diverse group of people to be leaders in this new interdisciplinary field.
DATE: -
TEAM MEMBERS: Robert Westervelt Bertrand Halperin
resource project Public Programs
The Nanoscale Science and Engineering Center entitled New England Nanomanufacturing Center for Enabling Tools is a partnership between Northeastern University, the University of Massachusetts Lowell, the University of New Hampshire, and Michigan State University. The NSEC unites 34 investigators from 9 departments. The NSEC is likely to impact solutions to three critical and fundamental technical problems in nanomanufacturing: (1) Control of the assembly of 3D heterogeneous systems, including the alignment, registration, and interconnection at three dimensions and with multiple functionalities, (2) Processing of nanoscale structures in a high-rate/high-volume manner, without compromising the beneficial nanoscale properties, (3) Testing the long-term reliability of nano components, and detect, remove, or prevent defects and contamination. Novel tools and processes will enable high-rate/high-volume bottom-up, precise, parallel assembly of nanoelements (such as carbon nanotubes, nanorods, and proteins) and polymer nanostructures. This Center will contribute a fundamental understanding of the interfacial behavior and forces required to assemble, detach, and transfer nanoelements, required for guided self-assembly at high rates and over large areas. The Center is expected to have broader impacts by bridging the gap between scientific research and the creation of commercial products by established and emerging industries, such as electronic, medical, and automotive. Long-standing ties with industry will also facilitate technology transfer. The Center builds on an already existing network of partnerships among industry, universities, and K-12 teachers and students to deliver the much-needed education in nanomanufacturing, including its environmental, economic, and societal implications, to the current and emerging workforce. The collaboration of a private and two public universities from two states, all within a one hour commute, will lead to a new center model, with extensive interaction and education for students, faculty, and outreach partners. The proposed partnership between NENCET and the Museum of Science (Boston) will foster in the general public the understanding that is required for the acceptance and growth of nanomanufacturing. The Center will study the societal implications of nanotechnology, including conducting environmental assessments of the impact of nanomanufacturing during process development. In addition, the Center will evaluate the economic viability in light of environmental and public health findings, and the ethical and regulatory policy issues related to developmental technology.
DATE: -
TEAM MEMBERS: Ahmed Busnaina Nicol McGruer Glen Miller Carol Barry Joey Mead
resource project Media and Technology
Cosmic Serpent - Bridging Native and Western Science Learning in Informal Settings is a four-year collaboration between the Indigenous Education Institute and the University of California-Berkeley targeting informal science education professionals. This project is designed to explore the commonalities between western science and native science in the context of informal science education. The intended impacts are to provide informal science education professionals with the skills and tools to gain an understanding of the commonalities between native and western worldviews; create regional networks that bridge native and museum communities; develop science education programs in which learners cross cultural borders between western science and indigenous peoples; and meet the needs of diverse audiences using culturally-responsive approaches to science learning. Participants are introduced to topics in physical, earth, space, and life science, using an interdisciplinary approach. Deliverables include professional development workshops, peer mentoring, museum programs for public audiences, a project website, and media products for use in programs and exhibits. Additionally, regional partnerships between museums and native communities, a legacy document, and a culminating conference jointly hosted by the National Museum of the American Indian and the Association of Science and Technology Centers will promote future sustainability. Strategic impact is realized through participants' increased understanding of native and western science paradigms, museum programs that reflect commonalities in the two approaches, partnerships between museums and native communities, and increased institutional capacity to engage native audiences in science. This project directly impacts 270 informal educators at 96 science centers and tribal/cultural museums nationally while the resulting programs will reach an estimated 200,000 museum visitors.
DATE: -
resource evaluation Public Programs
The Review of NISE Network Evaluation Findings: Years 1-5 seeks to investigate the work of the NISE Network since its inception in 2005 and provide an overarching summary of NISE Net Public Impacts evaluation efforts to the NISE Network and the broader ISE field.
DATE: