Skip to main content

Community Repository Search Results

resource evaluation Public Programs
The pilot test of a capacity building program integrating strategic discourse & community change theory identified a new path for advancing community STEM literacies. The results of experiment established partnerships with locally based non-profits working to address environmental justice and social disparities in areas threatened by climate change identified five recommendations to reset the role of ISLC’s as more relevant to the communities: 1) Allocate Time to Build Relationships; 2) Develop a Shared Definition of Resilience; 3) Situate Community Aspirations as Context for STEM Learning; 4)
DATE:
TEAM MEMBERS: John Fraser Billy Spitzer Rupu Gupta Nicole LaMarca Kathryn Nock
resource project Public Programs
An ecosystems model of learning suggests there are critical partners within and across a community that support learning across the lifespan. These school-community partnerships, developed with shared accountability and goals, are essential to rural students given the lack of economic and geographic access to such services. Youth in rural areas may have limited opportunities to engage with professionals. The team proposes to overcome this gap by capitalizing on the wide-spread interest in archaeology to teach critical thinking using STEM concepts and testing components of a partnership program. This project will advance knowledge on multidisciplinary STEM education by iteratively developing and researching an after-school program in which youth engage in multidisciplinary inquiry in the context of archeology. Mentored by archaeologists, rural youth and citizen scientists will use concepts and tools drawn from biology, ecology, geospatial science, mathematics, physics, and data science to identify and answer questions related to the history of their local region. An outcome of this project will be a road map for moving from a feasibility project to a larger implementation project locally and an understanding of community partnerships engaging more broadly.

Researchers at SUNY Binghamton will conduct a mixed-methods research study that examines the ways in which participation in a multidisciplinary after-school archaeology program supports the development of STEM identities among rural youth in sixth through eighth grades. The research team will use content analysis to analyze field notes from observations, as well as transcripts from focus groups and interviews with the youth. They will use inferential statistics to explore changes in the youths' STEM identity using an identity survey, which will be administered to the youth before and after participation in the program. Additionally, the research team will conduct qualitative research that explores shifts in the afterschool program providers' perceptions about supporting middle school youth as STEM learners. The program providers are comprised of graduate and undergraduate archaeology students, citizen scientists, and professional archaeologists. The course modules developed for the after-school program will be disseminated through professional networks and organizations dedicated to archaeologists and informal educators, and empirical findings will be shared widely via peer-reviewed publications. This project is funded by the Advanced Informal STEM Learning (AISL) program. As part of its overall strategy to enhance learning in informal environments, the AISL program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This Pilots and Feasability Studies award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Laurie Miroff Nina Versaggi Amber Simpson Luann Kida Lynda Carroll
resource project Media and Technology
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.

The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Harry Mairson
resource research Public Programs
This poster was presented at the 2019 AISL PI Meeting, and describes the the ongoing research questions and goals of the Ute STEM Project, which explores the integration of the traditional ecological knowledge (TEK) of the Ute Indians of Colorado and Utah and Western science, technology, engineering and math (STEM).
DATE:
TEAM MEMBERS: Liz Cook Shannon Voirol Sheila Goff Cassandra Atencio Garrett Briggs Alden Naranjo Betsy Chapoose Terry Knight, Sr. Nicole Shurack Richard Ott Carl Conner Kelly Kindscher Kate Livingston
resource project Exhibitions
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This Research in Service to Practice project will study how visual immersion and interactivity in augmented reality (AR) affects visitors' engagement and understanding of science. The research involves creating different versions of an AR exhibit to communicate paleontology research from the La Brea Tar Pits to the general public. Different versions of the exhibit will be compared to learn how design choices for immersion and interactivity impact visitors' engagement and understanding of science. The result of this study should be a model to follow for similar public exhibits, as well as design principles that generalize to AR experiences for a broader range of informal learning environments. This project will also demonstrate and report on specific AR mechanisms that help visitors understand the scientific process and increase knowledge about paleontology research.

The study includes a user-centered design and evaluation process with both formative and comparative studies. This project investigates two high-level design factors for mobile AR: visual immersion and interactivity. These impact the learning experience and the development so extensively that multiple versions are seldom compared. These factors also have unique considerations for informal settings, such as how to balance immersion against situational awareness (e.g., 3D viewers reduce field of view). One goal of this project is to systematically compare qualitatively different AR designs that convey equivalent science content and study these tradeoffs empirically. The second goal is to leverage these findings to publicly release an AR experience that promotes engagement, increases understanding of science, and reduces scientific misconceptions. This research will also contribute to understanding usability and logistical issues for different AR designs for public, outdoor, informal settings.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Emily Lindsey Benjamin Nye Gale Sinatra William Swartout
resource project Exhibitions
The Antarctic Dinosaurs project aims to leverage the popularity and charisma of dinosaurs to inspire a new generation of polar scientists and a more STEM (Science, Technology, Engineering, Mathematics)-literate citizenry. The project, centered on a giant screen film that will reach millions of theatrical viewers across the U.S., will convey polar science knowledge through appealing, entertaining media experiences and informal learning programs. Taking advantage of the scope of research currently taking place in Antarctica, this project will incorporate new perspectives into a story featuring dinosaurs and journey beyond the bones to reveal a more nuanced, multi-disciplinary interpretation of paleontology and the profound changes the Antarctic continent has endured. The goals of the project are to encourage young people to learn about Antarctica and its connection to the rest of the globe; to challenge stereotypes of what it means to participate in science; to build interest in STEM pursuits; and to enhance STEM identity.

This initiative, aimed particularly at middle school age youth (ages 11-14), will develop a giant screen film in 2D and 3D formats; a 3-episode television series; an "educational toolkit" of flexible, multi-media resources and experiences for informal use; a "Field Camp" Antarctic science intervention for middle school students (including girls and minorities); fictional content and presentations by author G. Neri dealing with Antarctic science produced for young people of color (including non-readers and at-risk youth who typically lack access to science and nature); and presentations by scientists featured in the film. The film will be produced as a companion experience for the synonymous Antarctic Dinosaurs museum exhibition (developed by the Field Museum, Chicago, in partnership with the Natural History Museum of Los Angeles County, Discovery Place, Charlotte, NC, and the Natural History Museum of Utah). Project partner The Franklin Institute will undertake a knowledge-building study to examine the learning outcomes resulting from exposure to the film with and without additional experiences provided by the Antarctic Dinosaurs exhibition and film-related educational outreach. The study will assess the strategies employed by practitioners to make connections between film and other exhibits, programs, and resources to improve understanding of the ways film content may complement and inspire learning within the framework of the science center ecosystem. The project's summative evaluation will address the process of collaboration and the learning impacts of the film and outreach, and provide best practices and new models for content producers and STEM educators. Project partners include film producers Giant Screen Films and Dave Clark Inc.; television producer Natural History New Zealand (NHNZ); Discovery Place (Charlotte, NC); The Franklin Institute; The Field Museum; The Natural History Museum of Utah (The University of Utah); author G. Neri; and a team of scientists and diversity advisers. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project has co-funding support from the Antarctic section of the Office of Polar Programs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Deborah Raksany Karen Elinich Andrew Wood
resource evaluation Websites, Mobile Apps, and Online Media
Summary brief describing summative evaluation associated with the MarcellusByDesign component of Marcellus Matters: EASE. Marcellus Matters: Engaging Adults in Science and Energy (EASE) was a program of Penn State University’s Marcellus Center for Outreach and Research (MCOR), in collaboration with other experts across the university. The first year of program activities took place in 2012, and the project continued through September 2016. EASE was a multidisciplinary initiative that provided adults in rural Pennsylvania with opportunities to increase their knowledge of science and energy
DATE:
TEAM MEMBERS: Joe E Heimlich Donnelley (Dolly) Hayde Rebecca Nall
resource evaluation Public Programs
Summary brief describing findings from summative evaluation for the Marcellus Citizen Science Network component of the Marcellus Matters: EASE project.
DATE:
TEAM MEMBERS: Joe E Heimlich Donnelley (Dolly) Hayde Rebecca Nall
resource evaluation Public Programs
Summative evaluation of one of four pieces of the Marcellus Matters: EASE project. This study examined the effectiveness of a program developed to immerse adult learners in the processes of scientific research by teaching participants to locate and report orphan and abandoned natural gas wells.
DATE:
TEAM MEMBERS: Joe E Heimlich Donnelley (Dolly) Hayde Rebecca Nall
resource project Professional Development and Workshops
For the United States to maintain its leading role on the world economic stage, it is essential to strengthen the American workforce in science, technology, engineering, and mathematics (STEM). Our current prosperity and our future success hinge on recruiting, training, and employing the creative and industrious STEM professionals who drive the innovation economy. Strengthening the American STEM workforce depends, in part, on broadening participation to students from demographics that have traditionally been underrepresented in STEM. This NSF INCLUDES Launch Pilot project will foster recruitment, training, and employment for indigenous STEM students, where the term "indigenous" comprises the terms Native American, American Indian, Alaskan Native, and Hawaiian Native. Specifically, this project will support the design and development of a first-of-its-kind network focused on environmental stewardship of indigenous lands. The network will comprise both tribal and government partners and will be organized by three faculty at the University of Colorado-Denver. Student recruitment, training, and employment will be organized around the unifying principle of land stewardship. The focus on land stewardship has been selected not only because it demands the expertise of STEM professionals, but also because land stewardship is among the top motivations for indigenous students considering STEM careers. Accordingly, this work is important on several fronts: It addresses the recognized need for STEM professionals; it broadens participation to students from underrepresented groups; and it provides a test bed for collective action by a first-of-its-kind network of tribal, government, and university partners.

The proposed network will work together to design, deploy, and debug a unique educational program giving students an opportunity to train for employment as tribal liaisons in the environmental field. In particular, this program will address the need for culturally-sensitive, scientifically-trained individuals who can serve as tribal liaisons between tribal and non-tribal organizations, which will allow them to prevent, minimize, or manage environmental incidents through their understanding of STEM principles and organizational dynamics. All students in this educational program will earn a regular four-year STEM degree, but a key feature of the program is that they will also participate in training and internships designed to provide background with nontechnical matters such as cultural awareness, environmental regulations, and organizational dynamics. Additionally, this educational program is designed to support recruitment of indigenous students by (1) providing a clear vision of a high-impact, culturally-relevant professional career and by (2) providing a cultural connection with obtaining a college degree. Taken together, the network aims to increase enrollment, retention, graduation, and alumni activity by indigenous students. Best practices and strategies for collective impact will be used to document achievement of the network in increasing the enrollment, retention, graduation, and alumni activity of indigenous students in higher education and in STEM careers. Continuous feedback will be collected to assess partner engagement and durability, and student satisfaction, performance, and progress. The network is expected to be sustainable because it addresses a demonstrated need; it is expected to be scalable because scientifically aware, culturally-sensitive individuals who can serve as tribal liaisons are needed not only regionally, but nationally.
DATE: -
TEAM MEMBERS: Timberley Roane David Mays Rafael Moreno-Sanchez Brenda Allen Grace RedShirt Tyon
resource project Professional Development, Conferences, and Networks
Ecology Plus (Ecology+) is an NSF INCLUDES Launch Pilot project with a goal of increasing the participation of underrepresented minorities in a broad range of career pathways where ecology plays a role. This project recognizes that both innovative scientific research and wider societal participation are needed for effective and equitable solutions to environmental issues that directly impact societal well-being and national security. Both research and policy are enhanced by full participation of all sectors of society. Despite the existence of multiple programs over many years, barriers to the participation of underrepresented minorities in ecology persist. One overarching systemic issue remains critical: that insufficient connections among programs result in breaks along critical transition points in career pathways. Project activities will lay the groundwork by developing a regional approach to alliance-building that can be extended across the nation.

Ecology+ will use a collective impact framework -- characterized by a common agenda, shared measurement, mutually reinforcing activities, continuous communication, and backbone support -- to optimize career guidance and support for undergraduate students, graduate students and early career technical and professional scientists. Starting in the Washington-Baltimore region, key objectives of the project are to develop infrastructure for effective communications among partners with the capacity to expand nationally; map potential career pathways with associated sets of necessary competencies, opportunities and mentors, and; empower alliance participants to overcome institutional barriers and patterns of unconscious bias. Ecology+ will: a) establish an online mentoring platform; b) offer a career fair with motivational talks and guidance on individual career development plans; c) offer a series of relevant skills workshops; d) arrange research or internship experiences, and; e) facilitate awareness and networking opportunities with employers from agencies, business and nonprofit sectors. The value of Ecology+ lies in its comprehensive, integrated approach that will bring new partners and their resources into a transformative and systemic response to the key barriers affecting underrepresented minorities in science.
DATE: -
TEAM MEMBERS: Teresa Mourad George Middendorf
resource project Professional Development, Conferences, and Networks
This NSF INCUDES Design and Development Launch Pilot will increase the recruitment, retention, and matriculation of racial and ethnic minorities in STEM Ph.D. programs contributing to hazards and disaster research. Increasing STEM focused minorities on hazards mitigation, and disaster research areas will benefit society and contribute to the achievements of specific, desired societal outcomes following disasters. The Minority SURGE Capacity in Disasters (SURGE) launch pilot will provide the empirical research to identify substantial ways to increase the underrepresentation of minorities in STEM disciplines interested in hazards mitigation and disaster research. Increasing the involvement of qualified minorities will help solve the broader vulnerability concerns in these communities and help advance the body of knowledge through the diversity of thought and creative problem solving in scholarship and practice. Utilizing workshops and a multifaceted mentorship program SURGE creates a new model that addresses the diversity concerns in both STEM and disaster fields, and make American communities more resilient following natural disasters. This project will be of interest to policymakers, educators and the general public.

The Minority SURGE Capacity in Disasters (SURGE) NSF INCLUDES Design and Development Launch Pilot will enhance the social capital of racial and ethnic minority communities by increasing their networks, connections, and access to disaster management decision-making among members of their community from STEM fields. The four-fold goals of SURGE are to: (1) increase the number of minority graduate researchers in STEM fields with a disaster focus; (2) develop and guide well-trained, qualified disaster scholars from STEM fields; (3) provide academic and professional mentorship for next generation minority STEM scholars in hazards mitigation and disaster research; and (4) develop professional and research opportunities that involve outreach and problem solving for vulnerable communities in the U.S. The SURGE project is organized as a lead-organization network through the University of Nebraska at Omaha and includes community partners. As a pilot project, SURGE participation is limited to graduate students from research-intensive universities across the country. Each student will attend workshops and training programs developed by the project leads. SURGE investigators will conduct project evaluation and assessment of their workshops, training, and mentorship projects. Results from evaluations and assessments will be presented at STEM and disaster-related conferences and published in peer-reviewed academic journals.
DATE: -
TEAM MEMBERS: DeeDee Bennett Lori Peek Terri Norton Hans Louis-Charles