Skip to main content

Community Repository Search Results

resource project Public Programs
The University of Montana spectrUM Discovery Area will implement “Making Across Montana” —a project to engage K–12 students and teachers in rural and tribal communities with making and tinkering. In collaboration with K–12 education partners in the rural Bitterroot Valley and on the Flathead Indian Reservation, the museum will develop a mobile making and tinkering exhibition and education program. The exhibition will be able to travel to K–12 schools statewide. The project team will develop a K–12 teacher professional development workshop, along with accompanying curriculum resources and supplies. The traveling program and related materials will build schools’ capacity to incorporate making and tinkering—and informal STEM experiences more broadly—into their teaching.
DATE: -
TEAM MEMBERS: Jessie Herbert-Meny
resource project Public Programs
KID Museum will develop and test a framework for working with community organizations to design learning experiences and create a facilitation guide for integrating cultural appreciation with maker-based learning. Building on its established Cultural Days programming, the museum will partner with four organizations that represent the region's largest ethnic populations. Together, they will plan, design, prototype, and refine new programs and experiences for children ages 4 to 14 and their families. The project team will adapt an IMLS-funded STEM-expert co-development model to develop and present cultural programs both at the museum and in the community. The project team will evaluate and refine the programs through visitor surveys. The museum will share the resulting framework and facilitation guide with other informal learning spaces to support the implementation of similar programs.
DATE: -
TEAM MEMBERS: Amanda Puerto Thorne
resource project Public Programs
The Fairchild Tropical Botanic Garden will leverage its partnership with NASA Kennedy Space Center to design, equip, and operate an inclusive and interactive scientific research workspace. The new makerspace will provide visitors of all ages an opportunity to contribute to identifying solutions to food production issues. Preparation of the Growing Beyond Earth Innovation Studio will involve equipping the space with state-of-the-art tools and materials for designing and monitoring growing experiments, installing plant growing equipment, and furnishing the space to maximize experimentation, collaboration, and learning. The garden will invite K-12 students, families and casual visitors to collaborate on plant science experiments, allowing them to address questions relevant to current NASA research on food production aboard spacecraft, and within habitats on the surface of Mars.
DATE: -
TEAM MEMBERS: Amy Padolf
resource project Public Programs
In partnership with early childhood service providers and elementary school systems, the Children's Museum of the Lowcountry will expand the reach of its programming to share its hands-on, play-based approach to STEM education with targeted children and educators. The museum will create a Power of Play curriculum with lesson plans that reflect best practices and focus on play-based activities to teach STEM concepts tied to grade level and state standards. The museum will train and support 40 teachers and educators from ten Head Start/First Steps early childhood centers and ten Title I elementary schools, and provide them with free Pop Up Tinker Shop (a museum on wheels) outreach visits. The trainings will build teacher confidence, promote best practices for play-based learning, support a community of practice, and enhance young learners' engagement, fascination, and attitude towards STEM. The Power of Play Curriculum will be published as a bound resource and shared with other children's museums and service providers.
DATE: -
TEAM MEMBERS: Starr Jordan
resource research Public Programs
As professionals, we often assume that the engaging experiences visitors have in our exhibits and programs will lead to long-term learning. But how do we know this is happening, and, moreover, how do we design exhibits, programs and interactions to maximize visitors’ ability to learn from their experiences? At Chicago Children’s Museum a long- standing research collaboration with Northwestern University and Loyola, Chicago University has allowed us to examine how families’ conversational reflections during and after their in-museum experiences impact children’s ability to process and recall
DATE:
TEAM MEMBERS: Tsivia Cohen Kim Koin
resource research Public Programs
But many young people face signifcant economic, cultural, historical, and/or social obstacles that distance them from STEM as a meaningful or viable option— these range from under-resourced schools, race- and gender-based discrimination, to the dominant cultural norms of STEM professions or the historical uses of STEM to oppress or disadvantage socio-economically marginalized communities (Philip and Azevedo 2017). As a result, participation in STEM-organized hobby groups, academic programs, and professions remains low among many racial, ethnic, and gender groups (Dawson 2017). One solution to
DATE:
TEAM MEMBERS: Bronwyn Bevan Kylie Peppler Mark Rosin Lynn Scarff Lissa Soep Jen Wong
resource project Public Programs
A makerspace is a place where participants explore their own interests and learn by creating, tinkering, and inventing artifacts through the use of a rich variety of tools and materials. This project will develop and research a flexible model for makerspaces that can be adapted to local settings to support informal STEM learning for hospitalized, chronically ill patients in pediatric environments who are predominantly youth of color from low-income backgrounds. These youth are subject to health disparities and healthcare inequities. Their frequent absence from school and other activities disrupt friendship formations, reduce their opportunities for social support, reduce their access to environments where they can feel a sense of self-agency through learning and creative activities. Through patient centered co-design, this project will build adaptable STEM makerspace environments conducive to STEM-rich learning, the exercise of self-agency, and development of STEM identity. Project design will focus on the sensitive nature of working with vulnerable populations (i.e., immunocompromised patients). The project will develop and disseminate several resources: (1) a flexible makerspace model that can be adapted to work in different pediatric settings; (2) research methods for conducting research in highly sensitive environments with and alongside young patients; and (3) professional development resources and a playbook including guidebook and facilitators guide that will articulate principles and processes for designing, implementing and sustaining makerspaces in pediatric settings. These resources will be widely disseminated through maker and other informal STEM networks.

The project will pursue two innovations. First, the project will develop the physical design of adaptable informal STEM makerspaces in pediatric settings. Second, the project will develop innovative patient-centered methodologies for studying approaches to physical design and the effects of makerspace installations for informal STEM-learning, self-agency, and STEM identity development. Using a design-based research approach, the project will investigate: (1) the extent to which physical makerspace designs support access to material, relational, and ideational resources for STEM-learning and well-being; (2) the extent to which makerspace installations, researchers, and medical care staff support patients in accessing and generating tools and other resources for personal learning and a sense of agency; and (3) the extent to which makerspace design with a focus on affording material, relational, and ideational resources provide rich opportunities for young patients to explore their own interests and cultivate STEM identities. One of the project's innovations, beyond development of adaptable makerspace model involves developing an innovative patient-centered methodology for conducting educational research toward broadening participation in STEM in highly sensitive medical care environments. The project will employ a mixed-methods research design and collect a variety of data to address these areas of research including documentation of makerspace design plans and renderings, observational data gathered through fieldnotes, video and audio recordings, informal interviews with patients, their families, and child-care staff, and patient generated artifacts. Articles for researchers and practitioners will be submitted for publication to appropriate professional journals and peer-reviewed publications.

As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Gokul Krishnan Maria Olivares
resource research Public Programs
Engaging with Tinkering is a highly stimulating and complex experience and invites rich reflections from museum practitioners and teachers. "Tinkering as an inclusive approach for building STEM identity and supporting students facing disadvantage or with low science capital” presents the reflective practice process and tools designed by the "Tinkering EU: Building Science Capital for All" project aiming to understand in more depth the potential impact of using a Tinkering approach with students facing disadvantage. Using tools specifically designed to help teachers observe their students
DATE:
TEAM MEMBERS: Emily Harris Mark Winterbottom MARIA XANTHOUDAKI
resource project Public Programs
Informal learning institutions, such as science centers and museums, are well-positioned to broaden participation in engineering pathways by providing children from underrepresented groups with motivational, self-directed engineering design experiences. Though many informal learning institutions offer opportunities for young visitors to engage in engineering activities, little is known about the specific features of these activities that support children's motivation in engineering design processes such as problem scoping, testing, and iteration. This project will address this gap and advance foundational knowledge by identifying features of engineering design activities, as implemented within an informal setting, which support underrepresented children's engineering motivation and persistence in engineering tasks. Researchers at New York Hall of Science (NYSCI) will observe children interacting with families and museum educators as they engage in different engineering design activities in NYSCI's Design Lab, an exhibition space devoted to hands-on exploration of engineering design. They will also survey and interview the children and their caregivers about these experiences. Analyses of these data sources will result in a description of features of design activities foster motivation and task persistence in engineering design. Findings will be disseminated nationally to other informal learning institutions, which in turn can use the knowledge generated from this project to create motivational, research-based, field-tested engineering design experiences for young visitors, especially for children from underrepresented groups. The experiences may encourage children to further pursue engineering pathways, resulting in a diversified engineering workforce with the potential to drive and sustain national innovation and global technological leadership.

This project uses the framework of goal orientation, defined as learners' self-reflection of why and how they engage in tasks, to understand whether, how, and why underrepresented 7-12-year-olds engage in engineering design activities in an informal learning institution. Though previous research has suggested that goal orientation is strongly, positively related to learning and motivation in formal settings such as schools, research in informal settings has not robustly accounted for the role of goal orientation in participants' engagement with learning tasks in these unique learning environments. To better understand how children's goal orientations contribute to their motivation in engineering in informal learning institutions, researchers will answer the following research questions: (1) What are underrepresented children's goals and goal orientations while participating in engineering design activities in an informal setting? (2) What contextual factors--including facilitation strategies, materials, task relevance, and social interactions with family members--may support or discourage the adoption of different goal orientations? (3) How do goal orientations relate to children's learning experience in the engineering design activities and the likelihood that they will test and iterate their solutions? These questions will be answered through a mixed-method research study conducted with approximately 200 families, with children aged 7-12, recruited from underrepresented groups. Semi-structured clinical interviews, conducted with 20% of the children and their caregivers, as well as observations and surveys gathered from all families, will provide information on the children's goal orientation and engagement as they relate to specific engineering design activities. Qualitative content analyses and multilevel structural equation modeling will result in findings that will be disseminated widely to other institutions of informal learning. Ultimately, this project will generate new empirical knowledge regarding the features of engineering design activities in informal learning environments that increase engineering engagement and motivation among underrepresented children, thereby broadening participation in engineering pathways.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: ChangChia James Liu Dorothy Bennett Katherine Culp
resource project Exhibitions
This project responds to calls to increase children's exposure and engagement in STEM at an early age. With the rise of the maker-movement, the informal and formal education sectors have witnessed a dramatic expansion of maker and tinkering spaces, programs, and curricula. This has happened in part because of the potential benefits of tinkering experiences to promote access and equity in engineering education. To realize these benefits, it is necessary to continue to make and iterate design and facilitation approaches that can deepen early engagement in disciplinary practices of engineering and other STEM-relevant skills. This project will investigate how stories can be integrated into informal STEM learning experiences for young children and their families. Stories can be especially effective because they bridge the knowledge and experiences young children and their caregivers bring to tinkering as well as the conversations and hands-on activities that can extend that knowledge. In addition, a unique contribution of the project is to test the hypothesis that stories can also facilitate spatial reasoning, by encouraging children to think about the spatial properties of their emerging structures.

This project uses design-based research methods to advance knowledge and the evidence base for practices that engender story-based tinkering. Using conjecture mapping, the team will specify their initial ideas and how it will be evident that design/practices impact caregivers-child behaviors and learning outcomes. The team will consider the demographic characteristics, linguistic practices, and funds of knowledge of the participants to understand the design practices (resources, activities) being implemented and how they potentially facilitate learning. The outcome of each study/DBR cycle serves as inputs for questions and hypotheses in the next. A culturally diverse group of 300+ children ages 5 to 8 years old and their parents at Chicago Children's Museum's Tinkering Lab will participate in the study to examine the following key questions: (1) What design and facilitation approaches engage young children and their caregivers in creating their own engineering-rich tinkering stories? (2) How can museum exhibit design (e.g., models, interactive displays) and tinkering stories together engender spatial thinking, to further enrich early STEM learning opportunities? and (3) Do the tinkering stories children and their families tell support lasting STEM learning? As part of the overall iterative, design-based approach, the team will also field test the story-based tinkering approaches identified in the first cycles of DBR to be most promising.

This project will result in activities, exhibit components, and training resources that invite visitors' stories into open-ended problem-solving activities. It will advance understanding of mechanisms for encouraging engineering learning and spatial thinking through direct experience interacting with objects, and playful, scaffolded (guided) problem-solving activities.


This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Tsivia Cohen Kim Koin Natalie Bortoli Catherine Haden David Uttal Maria Marcus
resource project Exhibitions
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The Designing Our Tomorrow project will develop a framework for creating exhibit-based engineering design challenges and expand an existing model of facilitation for use in engineering exhibits. The project seeks to broaden participation in engineering and build capacity within the informal science education (ISE) field while raising public awareness of the importance of sustainable engineering design practices. The project focuses on girls aged 9-14 and their families and is co-developed with culturally responsive strategies to ensure the inclusion and influence of families from Latino communities. The project will conduct research resulting in theory-based measures of engineering proficiencies within an exhibit context and an exhibit facilitation model for the topic area of engineering. Based on the research, the project will develop an engineering design challenge framework for developing design challenges within an exhibit context. As the context for research, the project will develop a bilingual English/Spanish 2,000-square foot traveling exhibition designed to engage youth and families in engineering design challenges that advance their engineering proficiencies from beginner to more informed, supported by professional development modules and a host-site training workshop introducing strategies for facilitating family engineering experiences within a traveling exhibition. The project is a collaboration of Oregon Museum of Science and Industry with the Biomimicry Institute, Adelante Mujeres, and the Fleet Science Center.

Designing Our Tomorrow builds on a theory-based engineering teaching framework and several previous NSF-funded informal education projects to engage families in compelling design challenges presented through the lens of sustainable design exemplified by biomimicry. Through culturally-responsive co-development and research strategies to include members of Latino communities and provide challenges that highlight the altruistic, creative, personally relevant, and collaborative aspects of engineering, the Designing Our Tomorrow exhibition showcases engineering as an appealing career option for women and helps families support each other's engineering proficiencies. To better understand and promote engineering learning in an ISE setting, the project will conduct two research studies to inform and iteratively develop effective strategies. In the first study, measurement development will build on prior research and practice to design credible and reliable measures of engineering proficiency, awareness, and collaboration, as well as protocols for use in exhibit development and the study of facilitation at engineering exhibits, and future research. The second study will explore the effects of facilitation on the experience outcomes.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Marcie Benne Verónika Núñez
resource project Media and Technology
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Design Squad Maker project, a collaboration of WGBH Public Television (WGBH) and the New York Hall of Science (NySci), will research and develop engineering design projects that provide evidence for how to integrate informal learning spaces with digital public media assets. The project will be designed to provide accessible, motivating pathways for children aged 8-11 in pursuing and completing ambitious, fully realized engineering design projects. The project will build on WGBH's existing Design Squad model for using media to engage kids in informal engineering activities and NySCI's expertise in facilitating children's unique design processes in museum settings. By developing and studying new strategies for supporting children's use of the design process, Design Squad Maker will address critical issues in engineering education and informal learning that remain relatively unexplored. Project research will contribute to the emerging literature on "connected learning" by building new knowledge about how children's design activities can be sustained and supported over time and across multiple contexts, such as science museums and homes. Drawing on existing research in the learning sciences and engineering education, the project seeks to advance knowledge about the role of museums, maker spaces, and digital technology in sustaining children's learning in engineering. The project will use a design-based research approach, a research and development process whereby educational designers collaborate with learning scientists. Museum practitioners will collaborate with research staff and media developers to design, test, and improve digital resources, facilitation strategies, and parent engagement strategies to support children through an entire design process. The research and development process will result in digital resources and approaches in a flexible toolkit, which will be used when assessing the project's scale-up potential at 10 museum/maker spaces. The project will conduct a summative evaluation, assessing the project's intended impacts with children, parents, and staff at museums/maker spaces across the country. The toolkit will be nationally disseminated through national partners that include the Association of Science-Technology Centers, Maker Education, the National Association for Family, School, and Community Engagement, and engineering education organizations. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Mary Haggerty Marisa Wolsky Sonja Latimore David Wells Susan Letourneau