Skip to main content

Community Repository Search Results

resource project Media and Technology
This project will teach foundational computational thinking (CT) concepts to preschoolers by creating a mobile app to guide families through sequenced sets of videos and hands-on activities, building on the popular PBS KIDS series Work It Out Wombats!
DATE: -
TEAM MEMBERS: Marisa Wolsky Janna Kook Jessica Andrews
resource project Public Programs
The Discovery Center at Murfree Spring, in partnership with six science centers and museums, will promote and invest in science education in rural communities with limited museum access. This coalition will work with two cohorts of rural school communities (12 total) and focus on engaging, learning from, and supporting rural school districts, teachers, families, and communities through relationship building, asset mapping, and the collaborative integration and implementation of museum resources. Additional activities include the production of publications, virtual presentations, and a virtual tool kit. The project will illustrate the ways in which museums can collaborate to support STEM and literacy at the K-2 level, enhance teacher self-efficacy, attitudes and beliefs, and engage family and community, strengthening services for Americans who live in the most rural areas.
DATE: -
TEAM MEMBERS: Dale McCreedy
resource project Media and Technology
The University of Montana will create “Transforming Spaces” to foster a more inclusive, culturally responsive space for Missoula’s urban Indian population and to better meet the community’s needs. The project will explore cross-cultural, collaborative approaches to STEM and Native Science. In collaboration with Montana’s tribal communities, the museum’s education team and advisory groups will design and implement hands-on activities that engage visitors with Native Science. The project will engage tribal role models and partner with tribal elders to create a library of videos for tribal partners, K–12 schools, and organizations. The project will offer teachers professional development designed to fulfill the statewide mandate of Indian Education for All. The exhibit will connect Native and non-Native museum visitors, close opportunity and achievement gaps, and ensure that all Missoula children feel a sense of belonging in museums, higher education, and STEM.
DATE: -
TEAM MEMBERS: Jessie Herbert-Meny
resource project Public Programs
The Cleveland Museum of Natural History will implement “SLAM Dunk,” a multidisciplinary initiative centered around Dunkleosteus terrelli, the largest predator and one of the fiercest creatures alive in the Devonian “Age of Fishes,” and for which the museum hold the best-preserved fossils. Each East Cleveland City Schools Kindergarten, 1st grade, and 2nd grade class will visit the museum for extended programming twice each school year. Museum educators will visit classrooms three times each school year. Museum staff will work with East Cleveland teachers on professional development offerings to increase teachers’ comfort level working with science content. Each school will receive an Educator Resource Center membership along with books and STEM materials. The museum will organize a family day at the museum each spring and provide scholarships for rising 3rd grade students to attend the museum’s week-long summer camps.
DATE: -
TEAM MEMBERS: Renata Brown
resource project Public Programs
The Arizona-Sonora Desert Museum will partner with the Flowing Wells Unified School District on “We Bee Scientists,” a program to engage students in grades K–6 in real-world science by learning about bees—the most important group of pollinators. They plan to create a curriculum and related activities aligned with the Arizona science standards. The program is an expansion of the Tucson Bee Collaborative, which empowers community scientists from “K to grey” to contribute to ecosystem health and understanding through the study of native bees. The museum also will partner with Pima Community College and the University of Arizona on the program, which will involve volunteers and high school, college, and university students in documenting the abundance and diversity of native bees.
DATE: -
TEAM MEMBERS: Debra Colodner
resource project Public Programs
ECHO, Leahy Center for Lake Champlain will increase its capacity to serve rural schools through programming opportunities under its STEM in Motion 2.0 program. In partnership with rural schools, they will conduct two year-long teacher institutes blending in-person and virtual professional development. They plan to develop a total of 270 in-person and virtual classroom STEM programs and produce 18 classroom curriculum kits and standard-activity aligned guides. As a result of STEM in Motion 2.0’s activities, the museum anticipate that 54 teachers will have additional capacity to deliver high-quality STEM learning experiences to K–5th grade students in underserved, rural communities.
DATE: -
TEAM MEMBERS: Nina Ridhibhinyo
resource project Informal/Formal Connections
This project is funded by the EHR Core Research (ECR) program, which supports work that advances fundamental research on STEM learning and learning environments, broadening participation in STEM, and STEM workforce development. It responds to continuing concerns about racial and social inequities in STEM fields that begin to emerge in the early childhood years. The overarching goal of the project is to identify cultural strengths that support early science learning opportunities among Spanish-speaking children from immigrant Latin American communities, a population that is traditionally underrepresented in STEM educational and career pursuits. Building on a growing interest in the ways stories can promote early engagement in and understanding of science, this project will investigate the role of oral and written stories as culturally relevant and potentially powerful tools for making scientific ideas and inquiry practices meaningful and accessible for young Latinx children. Findings will reveal ways that family storytelling practices can provide accessible entry points for Latinx children's early science learning, and recommend methods that parents and educators can use to foster learning about scientific practices that can, in turn, increase interest and participation in science education and fields.

The project will advance knowledge on the socio-cultural and familial experience of Latinx children that can contribute to their early science learning and skills. The project team will examine the oral story and reading practices of 330 Latinx families with 3- to 5-year-old children recruited from three geographic locations in the United States: New York, Chicago, and San Jose. Combining interviews and observations, the project team will investigate: (1) how conversations about science and nature occur in Latinx children's daily lives, and (2) whether and to what extent narrative and expository books, family personal narratives, and adivinanzas (riddles) engender family conversations about scientific ideas and science practices. Across- and within-site comparisons will allow the project team to consider the immediate ecology and broader factors that shape Latinx families’ science-related views and practices. Although developmental science has long acknowledged that early learning is culturally situated, most research on early STEM is still informed by mainstream experiences that largely exclude the lived experiences of children from groups underrepresented in STEM, especially those who speak languages other than English. The proposed work will advance understanding of stories as cultural resources to support early science engagement and learning among Latinx children and inform the development of high quality, equitable informal and formal science educational opportunities for young children.
DATE: -
TEAM MEMBERS: Gigliana Melzi Catherine Haden Maureen Callanan
resource project Public Programs
Many Black youth in both urban and rural areas lack engaging opportunities to learn mathematics in a manner that leads to full participation in STEM. The Young People’s Project (YPP), the Baltimore Algebra Project (BAP), and the Education for Liberation Network (EdLib) each have over two decades of experience working on this issue. In the city of Baltimore, where 90% of youth in poverty are Black, and only 5% of these students meet or exceed expectations in math, BAP, a youth led organization, develops and employs high school and college age youth to provide after-school tutoring in Algebra 1, and to advocate for a more just education for themselves and their peers. YPP works in urban or rural low income communities that span the country developing Math Literacy Worker programs that employ young people ages 14-22 to create spaces to help their younger peers learn math. Building on these deep and rich experiences, this Innovations in Development project studies how Black students see themselves as mathematicians in the context of paid peer-to-peer math teaching--a combined social, pedagogical, and economic strategy. Focusing primarily in Baltimore, the project studies how young people grow into new self-definitions through their work in informal, student-determined math learning spaces, structured collaboratively with adults who are experts in both mathematics and youth development. The project seeks to demonstrate the benefits of investing in young people as learners, teachers, and educational collaborators as part of a core strategy to improve math learning outcomes for all students.

The project uses a mixed methods approach to describe how mathematical identity develops over time in young people employed in a Youth-Directed Mathematics Collaboratory. 60 high school aged students with varying mathematical backgrounds (first in Baltimore and later in Boston) will learn how to develop peer- and near-peer led math activities with local young people in informal settings, after-school programs, camps, and community centers, reaching approximately 600 youth/children. The high school aged youth employed in this project will develop their own math skills and their own pedagogical skills through the already existing YPP and BAP structures, made up largely of peers and near-peers just like themselves. They will also participate in on-going conversations within the Collaboratory and with the community about the cultural significance of doing mathematics, which for YPP and BAP is a part of the ongoing Civil Rights/Human Rights movement. Mathematical identity will be studied along four dimensions: (a) students’ sequencing and interpretation of past mathematical experiences (autobiographical identity); (b) other people’s talk to them and their talk about themselves as learners, doers, and teachers of mathematics (discoursal identity); (c) the development of their own voices in descriptions and uses of mathematical knowledge and ideas (authorial identity); and (d) their acceptance or rejection of available selfhoods (socio-culturally available identity). Intended outcomes from the project include a clear description of how mathematical identity develops in paid peer-teaching contexts, and growing recognition from both local communities and policy-makers that young people have a key role to play, not only as learners, but also as teachers and as co-researchers of mathematics education.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Jay Gillen Maisha Moses Thomas Nikundiwe Naama Lewis Alice Cook
resource project Public Programs
This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential science, technology, engineering, and mathematics (STEM) learning from short duration experiences such as field trips. Although informal learning experiences can greatly contribute to interest in and knowledge of science, there is a shared concern among educators and researchers that students may have difficulty recalling and using scientific information and practices emphasized during these experiences, even though doing so would further their science learning. Nonetheless, science learning is rarely, if ever, a "one-shot deal." Children acquire knowledge about science cumulatively across different contexts and activities. Therefore, it is important that informal science learning institutions identify effective practices that support the consolidation of learning and memory from exhibit experiences to foster portable, usable knowledge across contexts, such as from informal science learning institutions, to classrooms, and homes. To this end, this Research in Service to Practice project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences. The project promises to increase learning for the 9,000+ 5th and 6th grade students from across the rurality and growing diversity of the state of Maine who annually participate in LabVenture, a 2.5-hour exploration of the Gulf of Maine ecosystem at Gulf of Maine Research Institute. The research will provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions. This project is funded by the Advancing Informal STEM Learning (AISL) and the Discovery Research PreK-12 (DRK-12) programs. It supports the AISL program goals to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. It supports the DRK-12 program goal of enhancing the learning and teaching of STEM by preK-12 students and teachers.

The project is grounded in the idea that visual representations, including drawings, can both enhance science learning and encourage reflection on doing science that can support extension of that learning beyond a singular informal science experience. The project uses design-based research to address the following research questions: (1) Does reflection during an informal science learning experience promote students’ retention and subsequent use of science information and practices that are part of the experience? (2) Does interpreting and constructing visual representations, such as drawings, improve students’ understanding and retention of information, and if so, how and when? and (3) Does combining visual representations and narrative reflections confer benefits on students’ science learning and engagement in science practices both during the informal learning experience, and later in their classrooms and at home? These questions will be pursued in collaboration with practitioners (both informal educators and classroom teachers) and a diverse team of graduate and undergraduate student researchers. Approximately 600 student groups (roughly 3000 individual students) will be observed during the LabVenture experience, with further data collection involving a portion of these students at school and at home. The project will yield resources and video demonstrations of field-tested, empirically based practices that promote engagement with visual representations and reflection, and science understandings that can travel within students' learning ecosystem. In support of broadening participation, the undergraduate/graduate student researchers will gain wide understanding and experience connecting research to practice and communicating science to academic and nonacademic audiences.
DATE: -
TEAM MEMBERS: David Uttal Amanda Dickes Leigh Peake Catherine Haden
resource project Public Programs
Milwaukee has established itself as a leader in water management and technology, hosting a widely recognized cluster of industrial, governmental, nonprofit, and academic activity focused on freshwater. At the same time, Milwaukee faces a wide range of challenges with freshwater, some unique to the region and others common to cities throughout the country. These challenges include vulnerability to flooding and combined sewer overflows after heavy rainfall, biological and pharmaceutical contamination in surface water, lead in drinking water infrastructure, and inequity in access to beaches and other recreational water amenities. Like other cities, Milwaukee grapples with the challenges global climate change imposes on urban water systems, including changing patterns of precipitation and drought.

These problems are further complicated by Milwaukee's acute racial and economic residential segregation. With a population of approximately 595,000, embedded within a metropolitan area of over 1.5 million, Milwaukee remains one of the country's most segregated cities. There is increasing urgency to engage the public--and especially those who are most vulnerable to environmental impacts--more deeply in the stewardship of urban water and in the task of creating sustainable urban futures. The primary goal of this four-year project is to foster community-engaged learning and environmental stewardship by developing a framework that integrates art with Science, Technology, Engineering, and Mathematics (STEM) experiences along with geography, water management, and social science. Synergies between STEM learning and the arts suggest that collaborations among artists, scientists, and communities can open ways to bring informal learning about the science of sustainability to communities.

WaterMarks provides an artist generated conceptual framework developed by Mary Miss / City as Living Laboratory (CALL) to help people better understand their relationship to the water systems and infrastructure that support their lives. Project activities include artist/scientist/community member-led Walks, which are designed to engage intergenerational participants both from the neighborhoods and from across the city, in considering the conditions, characteristics, histories, and ecosystems of neighborhoods. Walks are expanded upon in Workshops with residents, local scientists/experts, and other stakeholders, and include exploring current water-related environmental challenges and proposing solutions. The Workshops draw on diverse perspectives, including lived experience, scientific knowledge, and policy expertise. Art projects created by local artists amplify community engagement with the topics, including programming for teens and young adults. Free Wi-Fi will be integrated into various Marker sites around the city providing access to online, self-guided learning opportunities exploring the water systems and issues facing surrounding neighborhoods. Current programming focuses primarily on Milwaukee's predominantly African American near North Side and the predominantly Latinx/Hispanic near South Side. Many neighborhoods in these sections are vulnerable to such problems as frequent flooding, lead contamination in drinking water, inequities in safety and maintenance of green space, and less access to Lake Michigan, the city's primary natural resource and recreational amenity.

The WaterMarks project advances informal STEM learning in at least two ways. First, while the WaterMarks project is designed to fit Milwaukee, the project includes the development of an Adaptable Model Guide. The Guide is designed so that other cities can modify and employ its inclusive structure, programming, and process of collaboration among artists, scientists, partner organizations, and residents to promote citywide civic engagement in urban sustainability through the combination of informal STEM learning and public art. The Guide will be developed by a Community-University Working Group (CULab) hosted by UW-Milwaukee's Center for Community-Based Learning, Leadership, and Research and made up of diverse community and campus-wide stakeholders. In addition to overseeing the Guide’s creation, CULab will conceptualize onboarding and mentorship strategies for new participants as well as a framework for the program’s expansion and sustainability.

Second, through evaluation and research, the project will build a theoretical model for the relationships among science learning, engagement with the arts, and the distinctive contexts of different neighborhoods within an urban social-ecological system. The evaluation team, COSI’s Center for Research and Evaluation, and led by Co-PI Donnelly Hayde, aims to conduct formative, summative, and process evaluation of the Watermarks project, with the additional goal of producing evaluative research findings that can contribute to the broader field of informal learning. Evaluation foci include: How does the implementation of WaterMarks support positive outcomes for the project’s communities and the development of an adaptable model for city-scale informal science learning about urban environments? 2. To what extent do the type and degree of outcome-related change experienced by participating community residents vary across and/or between project sites? What factors, if any, appear to be linked to these changes? 3. To what extent and in what ways do the activities of the WaterMarks projects appear to have in situ effects related to the experience of place at project sites?

The project’s research team led by PI Ryan Holifield and Co-PI Woonsup Choi, will investigate how visual artistic activities introduced by the programming team as part of the Walks (and potentially other engagement activities) interact with personal, sociocultural, and physical contexts to produce distinctive experiences and outcomes of informal science learning about urban water systems. The aim of the research will be to synthesize the results from the different WaterMarks sites into an analysis generalizable beyond specific neighborhoods and applicable to other cities. The project's research questions include: 1. How does participation in Walks focused on visual artistic activities affect outcomes and experiences of informal STEM learning about urban water systems? 2. How do outcomes and experiences of informal STEM learning vary across different urban water topics, participants from different demographic groups, and contrasting sociocultural and biophysical contexts?

This Innovations in Development project is led by the University of Wisconsin-Milwaukee (UWM), in collaboration with City as Living Laboratory (CALL) and the COSI Center for Research and Evaluation.
DATE: -
resource project Media and Technology
This project will scale up fully virtual or face-to-face STEM professional development to afterschool educators in both urban and rural settings. Given that many afterschool educators have little or no background in STEM education, there is demand for professional development that is effective, inexpensive, and accessible. This project will build national capacity in STEM education by developing the STEM skills of over 1,500 educators across multiple states and will ultimately impact over 31,000 under-represented youth in these areas. The project will also deliver robust materials through a free open-source mechanism, for use by educators anywhere and anytime. The project will broaden participation in STEM by engaging community educators in the rural parts of the nation, a critically under-represented group in STEM. It will also reach educators from low-income urban communities across three states and seven cities, targeted through strategic networks and partnerships, including organizations such as the YMCA, 4-H, and the National Afterschool Association.

This collaborative project is scaling the ACRES model (Afterschool Coaching for Reflective Educators in STEM). The model humanizes the virtual experience, making it social and engaging, and allows educators to learn, share, and practice essential STEM facilitation skills with a focus on making STEM relevant and introducing STEM careers to youth. In addition to enhancing the professional STEM skills of rural and urban educators, the project will create a national cohort of coaches with deep expertise in (i) converting in-person activities for youth into a highly engaging, choice-rich online format, (ii) engaging isolated informal educators in supportive professional learning communities, and (iii) coaching foundational research-based STEM facilitation skills that ensure these activities are pedagogically sound. A key part of this broad implementation project involves studying how to integrate an effective professional development program into afterschool organizations, including the ways afterschool programs adapt the materials to be culturally responsive to their local communities. The researchers will also study factors contributing to the longer-term sustainability of the program. The research will use surveys, interviews, direct observations, and case studies of participants to provide the field with valuable insights into scaling a program in the afterschool world.

This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for extending access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
resource project Public Programs
For many youth, gaining access to quality STEM (science, technology, engineering mathematics) experiences is a challenge. Inequity and underrepresentation of youth of color in STEM persist. The makerspace movement holds great promise in broadening participation in STEM among youth from underrepresented communities. Makerspaces are defined as collaborative workspaces inside a library, school, or other community location designed for creating, learning, exploring, and sharing with high- to low-tech tools. Despite the availability of making programs focused on STEM activities targeted towards youth of color, the field has few models for designing these programs in ways that build upon youths’ cultural assets and desires for making. Working collaboratively with youth, families, and maker educators in Lansing, Michigan, and Greensboro, North Carolina, this project aims to deepen the field’s understanding about the rich and deep ingenuity in STEM-based making that youth from underrepresented communities can engage. These insights will be leveraged towards advancing community-based maker programming across four community-based makerspaces. The project will also build capacity among STEM-oriented maker educators, researchers, and youth. This model is important because the voices and perspectives of families and communities have been largely absent from the formative knowledge and theory-building processes of the field of makerspace education.

This project will build new knowledge about how and why youth and families make at home, in communities, and in STEM-based maker programs. Collaborators for the project include the University of Michigan, the University of North Carolina at Greensboro, and four STEM- and youth-oriented making spaces in Lansing, Michigan, and Greensboro, North Carolina. This project will take place in two phases, exploring two main research questions: 1) What are the learning results of making at home and in the community? And 2) How do youth organize community resources for sustained STEM making, and what facilitates or hinders such organization? Phase one investigates the community resources (people, tools, materials, knowledge, data, and spaces) youth leverage towards making and how they do so across time. The project will study how youth connect these resources to STEM-rich making and what youth and families learn in the process. In phase two, design-based research will be used to apply phase one insights to the design of community-based STEM-rich maker programs in four maker clubs in Michigan and North Carolina. This work will develop an understanding of youths’ family and community-based STEM-based making practices, including the community resources (people, tools, materials, knowledge, data, and spaces) that youth leverage.

This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
DATE: -