Skip to main content

Community Repository Search Results

resource research Media and Technology
In recent years, transmedia has come into the spotlight among those creating and using media and technology for children. We believe that transmedia has the potential to be a valuable tool for expanded learning that addresses some of the challenges facing children growing up in the digital age. Produced by the USC Annenberg Innovation Lab and the Joan Ganz Cooney Center, this paper provides a much-needed guidebook to transmedia in the lives of children age 5-11 and its applications to storytelling, play, and learning. Building off of a review of the existing popular and scholarly literature
DATE:
TEAM MEMBERS: Becky Herr-Stephenson Meryl Alper Erin Reilly
resource project Media and Technology
The project team is developing a prototype of a web-based game utilizing the illustrations of chemical elements and science terms created by Simon Basher in his three books, The Periodic Table: Elements with Style!, Chemistry: Getting a Big Reaction!, and Physics: Why Matter Matters! The game will incorporate augmented reality (person-to-person gameplay with the support of the software) to teach grade 4 to 6 students science concepts, including an introduction to chemistry. The game will include curriculum support materials. Pilot research in Phase I will seek to demonstrate that the software prototype functions as planned, teachers are able to integrate it within the classroom environment, and students are engaged with the prototype.
DATE: -
TEAM MEMBERS: Victoria Van Voorhis
resource project Media and Technology
This full scale research and development collaborative project between Smith College and Springfield Technical Community College improves technical literacy for children in the area of engineering education through the Through My Window learning environment. The instructional design of the learning environment results from the application of innovative educational approaches based on research in the learning sciences—Egan's Imaginative Education (IE) and Knowledge Building (KB). The project provides idea-centered engineering curriculum that facilitates deep learning of engineering concepts through the use of developmentally appropriate narrative and interactive multimedia via interactive forums and blogs, young adult novels (audio and text with English and Spanish versions), eight extensive tie-in activities, an offline teachers’ curriculum guide, and social network connections and electronic portfolios. Targeting traditionally underrepresented groups in engineering—especially girls—the overarching goals of the project are improving attitudes toward engineering; providing a deeper understanding of what engineering is about; supporting the development of specific engineering skills; and increasing interest in engineering careers. The project will address the following research questions: What is the quality of the knowledge building discourse? Does it get better over time? Will students, given the opportunity, extend the discourse to new areas? What scaffolding does the learning environment need to support novice participants in this discourse? Does the use of narrative influence participation in knowledge building? Are certain types of narratives more effective in influencing participation in knowledge building? Evaluative feedback for usability, value effectiveness, and ease of implementation from informal educators and leaders from the Connecticut After School Network CTASN) will be included. The evaluation will include documentation on the impact of narrative and multimedia tools in the area of engineering education. Currently, there is very little research regarding children and young teen engagement in engineering education activities using narrative as a structure to facilitate learning engineering concepts and principles. The research and activities developed from this proposed project contributes to the field of Informal Science and Engineering Education. The results from this project could impact upper elementary and middle-school aged children and members from underrepresented communities and girls in a positive way.
DATE: -
TEAM MEMBERS: Beth McGinnis-Cavanaugh Glenn Ellis Alan Rudnitsky Isabel Huff
resource research Media and Technology
The article presents information on the use of informational graphic novels to improve student motivation for reading instruction in U.S. education. The author looks at U.S. Common Core State Standards and close reading techniques. The article also discusses the use of Japanese Manga comic books in mathematics education.
DATE:
TEAM MEMBERS: William Brozo
resource project Media and Technology
Recent biomedical research has transformed scientific understanding of human biology. But many of these advances haven’t filtered into public awareness, hindering our ability to make good health-related decisions. A new educational program ‒ Biology of Human ‒ will help the public, particularly young people, better understand advances in biomedical research. This innovative, learning research-based science education program is strategically designed to increase awareness of and understanding about new biomedical research developments pertaining to human biology. Biology of Human will provide a sophisticated science education outreach package for students aged 11 to 15 and adults, including parents and educators. The project's goal is to leverage the latest biomedical information and innovations, a dynamic suite of educational and dissemination strategies, and research-driven approach grounded in sociology to broadly educate youth and adults about human biology. A team led by the University of Nebraska State Museum, the Department of Sociology at the University of Nebraska-Lincoln, and the NIH/NCRR-funded Nebraska Center for Virology (a Center of Biomedical Research Excellence) will work with science writers, kids, and educators to complete three specific aims: 1) stimulate interest in and understanding of biomedical research's importance to diverse individuals' health, communities, and environments; 2) establish partnerships among science educators, biomedical researchers, science journalists, and others to create dynamic educational resources focused on biomedical research developments and human biology; and 3) increase youths' interest in biomedical science. Biology of Human will provide adults and youth with several simultaneous, complementary options for learning about how biomedical research has helped us understand human biology including essays, books and blogs; entertaining and scientifically accurate mobile and tablet apps; activities and graphic stories; and a Web site that complements and supports the project's professional development programs. More than 175,000 youth and adults are expected to be directly impacted through this effort.
DATE: -
TEAM MEMBERS: Judy Diamond Julia McQuillan
resource project Media and Technology
This proposed four-year effort envisions a new approach to promoting science literacy through science journalism as a subject of study. It is premised on a critical set of assumptions: (a) Most citizens have the need to interpret scientific information found in popular media (e.g., newspapers, magazines, online resources, science-related television programs); (b) science journalism provides reliable, well-researched science information; (c) authentic science writing provides motivation to learn; and (d) standards and rubrics specifically developed for evaluating students' science-related expository text do not exist. Thus, the project approaches science journalism as a means to assist students to investigate and coherently write about contemporary science and to learn to base assertions and descriptions on reliable, publicly available sources. To this end, the project aims to develop, pilot, and evaluate a model of instruction that focuses on the following aspects: (a) Identifying questions of both personal and public interest; (b) evaluating contemporary science-related issues; (c) making available highly regarded sources of information as exemplars (in-print, online, interviews); (d) synthesizing information; (e) assessing information based on fact-checking using the five Ws (who, what, where, when, and why); and (f) coherently explaining claims and evidence. A hypothesis and a set of research questions guide this effort. The hypothesis is the following: If participating students successfully attain the fundamental elements of the proposed model, then they will become more literate and better critical consumers and producers of scientific information. The main guiding research question of the proposed activity is the following: Does the teaching of science journalism using an apprenticeship model, reliable data sources, and science-specific writing standards improve high school students' understanding of science-related public literacy? Secondary questions include (a) Is the teaching of science journalism an efficacious, replicable and sustainable model for improving science literacy?; (b) How useful are science-related standards and rubrics for scaffolding and evaluating students' science writing and science literacy?; and (c) What is the nature of the engagement in science that this apprenticeship invites?
DATE: -
TEAM MEMBERS: Alan Newman Joseph Polman E. Wendy Saul Cathy Farrar Alan Newman