Skip to main content

Community Repository Search Results

resource project Museum and Science Center Programs
The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.

The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.

The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE: -
TEAM MEMBERS: Maritza Macdonald Meryle Weinstein Rosamond Kinzler Mordecai-Mark Mac Low Edmond Mathez David Silvernail
resource project Public Programs
The Wild Center will partner with Adirondack Museum, Cornell’s Maple Program, and New York State/Northeastern New York Maple Producers Associations to build regional identity, revitalize a heritage industry, and connect people to nature through the art, story, history, and science of maple sugaring. The Northern New York Maple Project will create interpretative exhibits with ecological, historical, and economic information. The museum will develop an instructional maple sugaring video; a touch-screen story kiosk that lets visitors share stories through the exhibit and social media; a storytelling workshop for staff, project partners, and maple producers; community events and conferences; a school education program; community sugaring workshops; and educational materials, website, social media, and outreach to industry, food enthusiasts, and the business community. Regular planning meetings on goals and deliverables will track results and an outside consultant will evaluate the overall success of the project.
DATE: -
resource research Public Programs
What can a visually impaired student achieve in art education? Can visually impaired students teach sighted students about elements of perception that sighted students would not normally consider? Are the legal moves towards rights to equal access for visually impaired people useful in asserting that visually impaired students can gain as much from gallery exhibits as sighted students can? In this article, these questions are studied in a practice report of a course involving visually impaired and sighted students working in groups, studying in a museum and creating art work at schools for the
DATE:
TEAM MEMBERS: Simon James Hayhoe
resource project Public Programs
This is an efficacy study through which the Denver Museum of Nature and Science, the Denver Zoo, the Denver Botanic Gardens, and three of Denver's urban school districts join efforts to determine if partnerships among formal and informal organizations demonstrate an appropriate infrastructure for improving science literacy among urban middle school science students. The Metropolitan Denver Urban Advantage (UA Denver) program is used for this purpose. This program consists of three design elements: (a) student-driven investigations, (b) STEM-related content, and (c) alignment of schools and informal science education institutions; and six major components: (a) professional development for teachers, (b) classroom materials and resources, (c) access to science-rich organizations, (d) outreach to families, (e) capacity building and sustainability, and (e) program assessment and student learning. Three research questions guide the study: (1) How does the participation in the program affect students' science knowledge, skills, and attitudes toward science relative to comparison groups of students? (2) How does the participation in the program affect teachers' science knowledge, skills, and abilities relative to comparison groups of teachers? and (3) How do families' participation in the program affect their engagement in and support for their children's science learning and aspirations relative to comparison families?

The study's guiding hypothesis is that the UA Denver program should improve science literacy in urban middle school students measured by (a) students' increased understanding of science, as reflected in their science investigations or "exit projects"; (b) teachers' increased understanding of science and their ability to support students in their exit projects, as documented by classroom observations, observations of professional development activities, and surveys; and (c) school groups' and families' increased visits to participating science-based institutions, through surveys. The study employs an experimental research design. Schools are randomly assigned to either intervention or comparison groups and classrooms will be the units of analysis. Power analysis recommended a sample of 18 intervention and 18 comparison middle schools, with approximately 72 seventh grade science teachers, over 5,000 students, and 12,000 individual parents in order to detect differences among intervention and comparison groups. To answer the three research questions, data gathering strategies include: (a) students' standardized test scores from the Colorado Student Assessment Program, (b) students' pre-post science learning assessment using the Northwest Evaluation Association's Measures for Academic Progress (science), (c) students' pre-post science aspirations and goals using the Modified Attitude Toward Science Inventory, (d) teachers' fidelity of implementation using the Teaching Science as Inquiry instrument, and (e) classroom interactions using the Science Teacher Inquiry Rubric, and the Reformed Teaching Observation protocol. To interpret the main three levels of data (students, nested in teachers, nested within schools), hierarchical linear modeling (HLM), including HLM6 application, are utilized. An advisory board, including experts in research methodologies, science, informal science education, assessment, and measurement oversees the progress of the study and provides guidance to the research team. An external evaluator assesses both formative and summative aspects of the evaluation component of the scope of work.

The key outcome of the study is a research-informed and field-tested intervention implemented under specific conditions for enhancing middle school science learning and teaching, and supported by partnerships between formal and informal organizations.
DATE: -
TEAM MEMBERS: Nancy Walsh Kathleen Tinworth Andrea Giron Ka Yu Lynn Dierking Megan John Polly Andrews John H Falk
resource project Media and Technology
This full scale research and development collaborative project between Smith College and Springfield Technical Community College improves technical literacy for children in the area of engineering education through the Through My Window learning environment. The instructional design of the learning environment results from the application of innovative educational approaches based on research in the learning sciences—Egan's Imaginative Education (IE) and Knowledge Building (KB). The project provides idea-centered engineering curriculum that facilitates deep learning of engineering concepts through the use of developmentally appropriate narrative and interactive multimedia via interactive forums and blogs, young adult novels (audio and text with English and Spanish versions), eight extensive tie-in activities, an offline teachers’ curriculum guide, and social network connections and electronic portfolios. Targeting traditionally underrepresented groups in engineering—especially girls—the overarching goals of the project are improving attitudes toward engineering; providing a deeper understanding of what engineering is about; supporting the development of specific engineering skills; and increasing interest in engineering careers. The project will address the following research questions: What is the quality of the knowledge building discourse? Does it get better over time? Will students, given the opportunity, extend the discourse to new areas? What scaffolding does the learning environment need to support novice participants in this discourse? Does the use of narrative influence participation in knowledge building? Are certain types of narratives more effective in influencing participation in knowledge building? Evaluative feedback for usability, value effectiveness, and ease of implementation from informal educators and leaders from the Connecticut After School Network CTASN) will be included. The evaluation will include documentation on the impact of narrative and multimedia tools in the area of engineering education. Currently, there is very little research regarding children and young teen engagement in engineering education activities using narrative as a structure to facilitate learning engineering concepts and principles. The research and activities developed from this proposed project contributes to the field of Informal Science and Engineering Education. The results from this project could impact upper elementary and middle-school aged children and members from underrepresented communities and girls in a positive way.
DATE: -
TEAM MEMBERS: Beth McGinnis-Cavanaugh Glenn Ellis Alan Rudnitsky Isabel Huff
resource research Public Programs
It seems uncontroversial to claim that museums are unique places of interest with the potential to inspire learners, yet what this means and how it is managed are complex questions. Museum educators’ work is currently shaped by accountability requirements typically expressed as visitor targets. Centralised teaching and learning initiatives are presented as ‘good practice’. In opposition to these factors, the action research inquiry discussed here set out to enable the participants to research and reflect upon the challenges of their individual contexts, and to develop ideas for practice that
DATE:
TEAM MEMBERS: Lorraine Foreman-Peck Kate Travers
resource research Public Programs
This study explored the nature of the relationship between a fifth-grade teacher and an informal science educator as they planned and implemented a life science unit in the classroom, and sought to define this relationship in order to gain insight into the roles of each educator. In addition, student learning as a result of instruction was assessed. Prior research has predominately examined relationships and roles of groups of teachers and informal educators in the museum setting (Tal et al. in Sci Educ 89:920–935, 2005 ; Tal and Steiner in Can J Sci Math Technol Educ 6:25–46, 2006 ; Tran 2007
DATE:
TEAM MEMBERS: Ingrid Weiland Valarie Akerson
resource evaluation Public Programs
The National Science Foundation (NSF) awarded funding to the Oregon Museum of Science and Industry (OMSI) and Portland State University (PSU) in Portland, Oregon to support a “Connecting Researchers and Public Audiences” (CRPA) project titled ResearchLink: Spotlight on Solar Technologies. The primary goals of CRPA projects are to communicate to the public about specific NSF research projects. This ResearchLink project promoted public awareness of two NSF-funded projects led by Dr. Carl Wamser at PSU, Integrating Green Roofs and Photovoltaic Arrays for Energy Management and Optimization of
DATE:
TEAM MEMBERS: Oregon Museum of Science and Industry Anne Sinkey Barry Walther Liz Rosino Wright
resource research Media and Technology
This research follows on a previous study that investigated how digitally augmented devices and knowledge building could enhance learning in a science museum. In this study, we were interested in understanding which combination of scaffolds could be used in conjunction with the unique characteristics of informal participation to increase conceptual and cognitive outcomes. Three hundred seven students from nine middle schools participated in the study. Six scaffolds were used in various combinations. The first was the digital augmentation. The next five were adaptations of knowledge-building
DATE:
TEAM MEMBERS: Susan Yoon Karen Elinich Joyce Wang Jaqueline Schooneveld Emma Anderson
resource research Public Programs
How do informal learning organizations work with schools as part of a broader educational ecology? We examined this question through a comparative case study of two collaborative efforts whereby informal arts education organizations, a children's museum and a community-based organization, worked with an urban school district to redefine the provision of educational services for children and youth. Grounded conceptually in organizational theory, our study identified factors that enable and constrain collaboration across the formal-informal divide. We argue that examining the dynamics of cross
DATE:
resource project Media and Technology
This project supports the development of technological fluency and understanding of STEM concepts through the implementation of design collaboratives that use eCrafting Collabs as the medium within which to work with middle and high school students, parents and the community. The researchers from the University of Pennsylvania and the Franklin Institute combine expertise in learning sciences, digital media design, computer science and informal science education to examine how youth at ages 10-16 and families in schools, clubs, museums and community groups learn together how to create e-textile artifacts that incorporate embedded computers, sensors and actuators. The project investigates the feasibility of implementing these collaboratives using eCrafting via three models of participation, individual, structured group and cross-generational community groups. They are designing a portal through which the collaborative can engage in critique and sharing of their designs as part of their efforts to build a model process by which scientific and engineered product design and analysis can be made available to multiple audiences. The project engages participants through middle and high school elective classes and through the workshops conducted by a number of different organizations including the Franklin Institute, Techgirlz, the Hacktory and schools in Philadelphia. Participants can engage in the eCrafting Collabs through individual, collective and community design challenges that are established by the project. Participants learn about e-textile design and about circuitry and programming using either ModKit or the text-based Arduino. The designs are shared through the eCrafting Collab portal and participants are required to provide feedback and critique. Researchers are collecting data on learner identity in relation to STEM and computing, individual and collective participation in design and student understanding of circuitry and programming. The project is an example of a scalable intervention to engage students, families and communities in developing technological flexibility. This research and development project provides a resource that engages students in middle and high schools in technology rich collaborative environments that are alternatives to other sorts of science fairs and robotic competitions. The resources developed during the project will inform how such an informal/formal blend of student engagement might be scaled to expand the experiences of populations of underserved groups, including girls. The study is conducting an examination of the new types of learning activities that are multiplying across the country with a special focus on cross-generational learning.
DATE: -
TEAM MEMBERS: Yasmin Kafai Karen Elinich Orkan Telhan
resource research Public Programs
This paper describes the potential benefits of incorporating art into physics education. Drawing and sculpture provide a way of understanding abstract concepts. The process may also allow educators to “humanize” physics and thus make it more accessible to historically marginalized groups.
DATE:
TEAM MEMBERS: Clea Matson