Skip to main content

Community Repository Search Results

resource research Media and Technology
We cannot take access to equitable out‐of‐school science learning for granted. Data compiled in 2012 show that between a fifth (22% in Brazil) and half (52% in China and the United States) of people in China, Japan, South Korea, India, Malaysia, the United States, the European Union, and Brazil visited zoos, aquaria, and science museums (National Science Foundation, 2012). But research suggests participation in out‐of‐school science learning is far from equitable and is marked by advantage, not least the social axes of age, social class, and ethnicity (Dawson, 2014, 2014; National Science
DATE:
TEAM MEMBERS: emily dawson
resource evaluation Public Programs
STEM out-of-school time (OST) programs play an important role in helping youth develop the 21st century skills they need to prepare them for the workforce, particularly the teamwork skills necessary for the growing collaborative nature of work in STEM (National Research Council, 2015). However, there is a lack of appropriate tools to evaluate this key programmatic outcome in STEM OST settings. Through funding from the National Science Foundation, we carried out the Collaboration in the 21st Century (C2C) project to help address this need by developing and validating a survey, the Youth
DATE:
TEAM MEMBERS: Amy Grack Nelson
resource project Public Programs
Over the last decade there has been significant growth in the number of afterschool programs that offer science activities to youth. Measuring the quality and contributions of these programs to youth learning is important to both the afterschool organizations and the communities that support them, including participating youth and their families. To address the range and evolving interests and capacities of all young people within a community, there are, by necessity, a wide range of types of afterschool science programming. Such programming may vary by focus (e.g., botany, astronomy, computer science, engineering, or zoology), structure (e.g., hands-on, place-based, on-line, or in partnership with local industry) and other factors. Across the range of programming, there are different intended learning goals and opportunities for students. For these reasons, a range of measurement tools are needed to monitor the quality and outcomes of wide range of afterschool science programs. To explore the current state of evaluation and measurement tools for use in afterschool science programs, the University of Washington, in partnership with the Afterschool Alliance and the National Girls Collaborative, will design and host a conference for afterschool STEM leaders, researchers, and evaluators. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This conference is grounded in the programmatic priorities and strategies of afterschool organizations. The goals of the conference are to (a) articulate and map the range of intended outcomes of afterschool STEM programs; (b) identify how existing measurement and evaluation tools map on to intended outcomes; and (c) identify overlaps, complementarities, and gaps in the available tools in order to provide guidance to (i) practitioners on how and why to select current evaluation tools and (ii) researchers on directions for future tool development. Tangible convening products include:

*A detailed, visual representation ("intended outcomes map") of the range of outcomes afterschool programs are seeking to achieve, related to student learning, educator capacity, program quality, family impacts, learning ecosystems connectivity;

*A taxonomy of current evaluation instruments aligned to these outcomes, with an explanation of how they overlap or differentiate both methodologically and theoretically;

*The identification of the areas where further work is needed, including further specification of learning outcomes and future development of evaluation tools.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Katie Headrick Taylor Karen Peterson Jennifer Rinehart Bronwyn Bevan
resource evaluation Public Programs
Techbridge Girls’ mission is to help girls discover a passion for science, engineering, and technology (SET). In August 2013, Techbridge Girls was awarded a five-year National Science Foundation grant to scale up its afterschool program from the San Francisco Bay Area to multiple new locations around the United States. Techbridge Girls began offering afterschool programming at elementary and middle schools in Greater Seattle in 2014, and in Washington, DC in 2015. Education Development Center is conducting the formative and summative evaluation of the project. To assess the implementation
DATE:
TEAM MEMBERS: Ginger Fitzhugh Carrie Liston Sarah Armstrong
resource evaluation Public Programs
Techbridge Girls’ mission is to help girls discover a passion for science, engineering, and technology (SET). In August 2013, Techbridge Girls was awarded a five-year National Science Foundation grant to scale up its afterschool program from the San Francisco Bay Area to multiple new locations around the United States. Techbridge Girls began offering afterschool programming at elementary and middle schools in Greater Seattle in 2014, and in Washington, DC in 2015. Education Development Center is conducting the formative and summative evaluation of the project. To assess the implementation
DATE:
TEAM MEMBERS: Ginger Fitzhugh Carrie Liston Sarah Armstrong
resource evaluation Public Programs
Techbridge Girls’ mission is to help girls discover a passion for science, engineering, and technology (SET). In August 2013, Techbridge Girls was awarded a five-year National Science Foundation grant to scale up its after-school program from the San Francisco Bay Area to multiple new locations around the United States. Techbridge Girls began offering after-school programming at elementary and middle schools in Greater Seattle in 2014, and in Washington, DC in 2015. Education Development Center is conducting the formative and summative evaluation of the project. To assess the
DATE:
TEAM MEMBERS: Ginger Fitzhugh Carrie Liston Sarah Armstrong
resource evaluation Public Programs
Techbridge Girls’ mission is to help girls discover a passion for science, engineering, and technology (SET). In August 2013, Techbridge Girls was awarded a five-year National Science Foundation grant to scale up its after-school program from the San Francisco Bay Area to multiple new locations around the United States. Techbridge Girls began offering after-school programming at elementary and middle schools in Greater Seattle in 2014, and in Washington, DC in 2015. Education Development Center is conducting the formative and summative evaluation of the project. To assess the
DATE:
TEAM MEMBERS: Ginger Fitzhugh Carrie Liston Sarah Armstrong
resource evaluation Public Programs
Techbridge Girls’ mission is to help girls discover a passion for science, engineering, and technology (SET). In August 2013, Techbridge Girls was awarded a five-year National Science Foundation grant to scale up its after-school program from the San Francisco Bay Area to multiple new locations around the United States. In the fall of 2014, Techbridge Girls began offering after-school programming at five elementary and two middle schools in the Highline Public School district, located near Seattle, WA. Education Development Center is conducting the formative and summative evaluation of the
DATE:
TEAM MEMBERS: Ginger Fitzhugh Carrie Liston Sarah Armstrong
resource project Afterschool Programs
“Tinkering EU: Building Science Capital for All” aims to develop activities and resources that support a learner-centred culture, improve science education and develop 21st century skills - all of which are fundamental for active citizenship, employability, and social inclusion. To do this, it adopts ‘Tinkering’, an innovative pedagogy developed in the USA, which is used by museums, and has proven able to create a lifelong engagement with science for everyone. Tinkering works particularly well for people who argue that “they are not good at science” or are disaffected from any formal teaching and learning process. It can be a powerful tool to tackle disadvantage. The project integrates Tinkering into the school curriculum to develop the science capital of disadvantaged youth through the use of museums. It addresses students from 8 to 14 years old (primary and junior high schools).

Coordinator: National Museum of Science and Technology Leonardo da Vinci

Partners:
University of Cambridge – UK
NEMO Science Museum – The Netherlands
Science Gallery Dublin – Ireland
CosmoCaixa – Spain
Science Center Network – Austria
NOESIS – Greece
DATE: -
TEAM MEMBERS: MARIA XANTHOUDAKI
resource research Public Programs
The purpose of this study is to thoroughly describe a program designed to strengthen the pipeline of Latino students into post-secondary science, technology, engineering, and mathematics (STEM) education, and present evaluation data to assess multiyear effectiveness. The program includes a suite of interventions aimed at students and families, and was implemented in a low-income school cluster with a high Latino population in metro Atlanta. Our intervention includes a high school and middle school mentoring program, STEM-focused extracurricular activities (summer camps, research and community
DATE:
TEAM MEMBERS: Diley Hernandez Marion Usselman Shaheen Rana Meltem Alemdar Analia Rao
resource research Public Programs
This poster was presented at the annual meeting of the National Association for Research in Science Teaching (NARST) in Atlanta, GA. It discusses how cogenerative dialogues (cogens) might serve as a tool to dissolve emotional breakdowns in a project-based learning (PBL) science internship.
DATE:
TEAM MEMBERS: Kenneth Tobin Pei-Ling Hsu
resource project Media and Technology
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.

In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).

Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
DATE: -