Skip to main content

Community Repository Search Results

resource research Public Programs
The landscape for out-of-school STEM learning in Hong Kong is evolving. In 2017, to capture this change, the Croucher Foundation conducted a mapping exercise. This is the second annual mapping exercise conducted by the Croucher Foundation. The study reveals a rich and vibrant ecosystem for out-of-school STEM in Hong Kong with almost 2,000 discrete activities covering a very wide range of science disciplines. This second report indicates extremely rapid growth in available out-of-school STEM activities compared to 2016 and an even larger increase in the number of organisations offering out
DATE:
TEAM MEMBERS: Siu Po Lee David Foster
resource evaluation Public Programs
The Water for Life project has been an effective, and in some cases an essential vehicle for addressing issues around water quality and retention in island settings where water security is an on-going challenge. The focus on local partnerships was a highly valued attribute of the WfL project, and the informal science and conservation education resources produced and disseminated by the project have had a significant impact on these populations
DATE:
TEAM MEMBERS: David Heil
resource research Public Programs
The Croucher Foundation recently embarked on a research study to explore informal science learning in Hong Kong. This is the first study to focus on the out-of-school ecosystem for science learning in Hong Kong. This exploratory and investigative study identified over a thousand out-of-school STEM activities that happened between June 2015 and May 2016, including courses, workshops and exhibitions available to Hong Kong school students over this twelve-month period. The study excluded tutorials and exam-orientated courses and focused instead on activities designed to encourage an interest in
DATE:
TEAM MEMBERS: Siu Po Lee David Foster
resource project Public Programs
By engaging diverse publics in immersive and deliberative learning forums, this three-year project will use NOAA data and expertise to strengthen community resilience and decision-making around a variety of climate and weather-related hazards across the United States. Led by Arizona State University’s Consortium for Science, Policy & Outcomes and the Museum of Science Boston, the project will develop citizen forums hosted by regional science centers to create a new, replicable model for learning and engagement. These forums, to be hosted initially in Boston and Phoenix and then expanded to an additional six sites around the U.S., will facilitate public deliberation on real-world issues of concern to local communities, including rising sea levels, extreme precipitation, heat waves, and drought. The forums will identify and clarify citizen values and perspectives while creating stakeholder networks in support of local resilience measures. The forum materials developed in collaboration with NOAA will foster better understanding of environmental changes and best practices for improving community resiliency, and will create a suite of materials and case studies adaptable for use by science centers, teachers, and students. With regional science centers bringing together the public, scientific experts, and local officials, the project will create resilience-centered partnerships and a framework for learning and engagement that can be replicated nationwide.
DATE: -
TEAM MEMBERS: Dan Sarewitz
resource project Media and Technology
C-RISE will create a replicable, customizable model for supporting citizen engagement with scientific data and reasoning to increase community resiliency under conditions of sea level rise and storm surge. Working with NOAA partners, we will design, pilot, and deliver interactive digital learning experiences that use the best available NOAA data and tools to engage participants in the interdependence of humans and the environment, the cycles of observation and experiment that advance science knowledge, and predicted changes for sea level and storm frequency. These scientific concepts and principles will be brought to human scale through real-world planning challenges developed with our city and government partners in Portland and South Portland, Maine. Over the course of the project, thousands of citizens from nearby neighborhoods and middle school students from across Maine’s sixteen counties, will engage with scientific data and forecasts specific to Portland Harbor—Maine’s largest seaport and the second largest oil port on the east coast. Interactive learning experiences for both audiences will be delivered through GMRI’s Cohen Center for Interactive Learning—a state-of-the-art exhibit space—in the context of facilitated conversations designed to emphasize how scientific reasoning is an essential tool for addressing real and pressing community and environmental issues. The learning experiences will also be available through a public web portal, giving all area residents access to the data and forecasts. The C-RISE web portal will be available to other coastal communities with guidance for loading locally relevant NOAA data into the learning experience. An accompanying guide will support community leaders and educators to embed the interactive learning experiences effectively into community conversations around resiliency. This project is aligned with NOAA’s Education Strategic Plan 2015-2035 by forwarding environmental literacy and using emerging technologies.
DATE: -
TEAM MEMBERS: Leigh Peake
resource project Public Programs
Children in the Norfolk, Va., area will inherit the second highest sea level rise on the East Coast. In response, the non-profit Elizabeth River Project will prepare one of the first comprehensive youth education programs on climate change resilience on this coast. The Elizabeth River Project, working since 1993 to restore the environmental health of the urban Elizabeth River, will deploy its Dominion Virginia Power Learning Barge, “America’s Greenest Vessel,” and its new urban park, Paradise Creek Nature Park, to empower 21,000 K-12 students over three years to become informed decision makers and environmental stewards, prepared to adapt to rising seas. The project primarily will reach under-served schools in Norfolk and adjoining Portsmouth, Va. Lead science partner will be Old Dominion University, on the forefront of climate change research. Other partners include the Chrysler Museum of Art, ground zero for street flooding that has become routine in Norfolk. A youth strategy for the Elizabeth River “watershed” or drainage area will be disseminated nationally internationally by the City of Norfolk through its participation as one the Rockefeller Foundation’s 100 Resilient Cities. The youth strategy will be used by Norfolk to complement its Norfolk Resilience Strategy, prepared so far with adults in mind.
DATE: -
TEAM MEMBERS: Robin Dunbar
resource project Public Programs
Recharge the Rain moves sixth through twelfth grade teachers, students and the public through a continuum from awareness, to knowledge gain, to conceptual understanding, to action; building community resiliency to hazards associated with increased temperatures, drought and flooding in Arizona. Watershed Management Group with Arizona Project WET will utilize NOAA assets and experts from the National Weather Service and Climate Assessment for the Southwest (CLIMAS) to inform citizens and galvanize their commitment to building a community, resilient to the effects of a warming climate. Project activities will be informed by Pima County’s hazard mitigation plan and planning tools related to preparing for and responding to flooding and extreme heat. Starting January 2017, this four-year project will 1) develop curriculum with Tucson-area teachers that incorporates systems-thinking and increases understanding of earth systems, weather and climate, and the engineering design of rainwater harvesting systems 2) immerse students in a curricular unit that results in the implementation of 8 teacher/student-led schoolyard water harvesting projects, 3) train community docents in water harvesting practices and citizen-science data collection, 4) involve Tucson community members in water harvesting principles through project implementation workshops, special events, and tours, and 5) expand program to incorporate curriculum use in Phoenix-area teachers’ classrooms and 6) finalize a replicable model for other communities facing similar threats. Environmental and community resiliency depends upon an informed society to make the best social, economic, and environmental decisions. This idea is not only at the core of NOAA’s mission, but is echoed in the programs provided by Watershed Management Group and Arizona Project WET.
DATE: -
TEAM MEMBERS: Catlow Shipek
resource research Public Programs
Environmental education is about creating healthier communities for all—with ecological integrity, shared prosperity, and social equity as our long-term goals. Environmental educators have been working in, with, and for communities for decades. As communities have evolved, so has the field of environmental education. In creating the Community Engagement: Guidelines for Excellence, NAAEE brings the field’s professional standards to environmental educators’ dynamic work in today’s communities. Why are these guidelines important? Environmental educators everywhere work in a constantly shifting
DATE:
TEAM MEMBERS: North American Association for Environmental Education (NAAEE) Michele Archie Susan Clark Judy Braus
resource research Public Programs
Learn how to create opportunities for young people from low-income, ethnically diverse communities to learn about growing food, doing science, and how science can help them contribute to their community in positive ways. The authors developed a program that integrates hydroponics (a method of growing plants indoors without soil) into both in-school and out-of-school educational settings.
DATE:
TEAM MEMBERS: Amie Patchen Andrea Aeschlimann Anne Vera-Cruz Anushree Kamath Deborah Jose Jackie DeLisi Michael Barnett Paul Madden Rajeev Rupani
resource project Media and Technology
Public Participation in Scientific Research (PPSR), often referred to as crowdsourcing or citizen science, engages participants in authentic research, which both advances science discovery as well as increases the potential for participants' understanding and use of science in their lives and careers. This four year research project examines youth participation in PPSR projects that are facilitated by Natural History Museums (NHMs). NHMs, like PPSR, have a dual focus on scientific research and science, technology, engineering, and mathematics (STEM) education. The NHMs in this project have established in-person and online PPSR programs and have close ties with local urban community-based organizations. Together, these traits make NHMs appropriate informal learning settings to study how young people participate in PPSR and what they learn. This study focuses on three types of PPSR experiences: short-term outdoor events like bioblitzes, long-term outdoor environmental monitoring projects, and online PPSR projects such as crowdsourcing the ID of field observations. The findings of this study will be shared through PPSR networks as well as throughout the field in informal STEM learning in order to strength youth programming in STEM, such that youth are empowered to engage in STEM research and activities in their communities. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.

The study employs observations, surveys, interviews, and learning analytics to explore three overarching questions about youth learning: 1) What is the nature of the learning environments and what activities do youth engage in when participating in NHM-led PPSR? 2) To what extent do youth develop three science learning outcomes, through participation in NHM-led citizen science programs? The three are: a) An understanding of the science content, b) identification of roles for themselves in the practice of science, and c) a sense of agency for taking actions using science? 3) What program features and settings in NHM-led PPSR foster these three science learning outcomes among youth? Based on studies occurring at multiple NHMs in the US and the UK, the broader impact of this study includes providing research-based recommendations for NHM practitioners that will help make PPSR projects and learning science more accessible and productive for youth. This project is collaboration between education researchers at University of California, Davis and Open University (UK), and Oxford University (UK) and citizen science practitioners, educators, and environmental scientists at three NHMs in the US and UK: NHM London, California Academy of Sciences, and NHM Los Angeles.
DATE: -
TEAM MEMBERS: Heidi Ballard Alison Young Lila Higgins Lucy Robinson Christothea Herodotou Grant Miller
resource research Public Programs
The Oregon Museum of Science and Industry (OMSI), located in Portland, is a hands-on science museum. In 2013, OMSI received funding from the National Science Foundation for the project Researching the Value of Educator Actions for Learning (REVEAL) to study how museum educators can better help families learn math while interacting with museum exhibits. Through REVEAL, OMSI was able to partner with Adelante Mujeres, a non-profit community organization located in Forest Grove that educates and empowers Latina women and their families. Here we share some of the lessons learned from the
DATE:
TEAM MEMBERS: Scott Pattison
resource research Media and Technology
Informal learning opportunities are increasingly being recognized as important for youth participation in authentic experiences at the intersection of science, technology, engineering, and math (STEM) (Dorsen, Carlson, and Goodyear 2006). These experiences may involve specialized equipment and dedicated time for learners to gain familiarity with the relevant scientific and engineering practices (i.e., designing experiments on their own, struggling to make sense of data, learning from their own mistakes and the results of peers), which often go beyond the classroom. However, the educators who
DATE:
TEAM MEMBERS: Kathryn Williamson Sue Ann Heatherly Vivian Hoette Eva Erdosne Toth David Beer