Skip to main content

Community Repository Search Results

resource project Public Programs
Oregon State University (OSU) will facilitate a Polar STEAM (Science, Technology, Engineering, Arts and Mathematics) program that aims to increase the impact and visibility of polar science by integrating arts- and education-based elements into the polar science research setting.
DATE: -
TEAM MEMBERS: Julie Risien Kim Bernard Susan Roberta Rowe Peter Betjemann
resource project Professional Development, Conferences, and Networks
Growth in the US Latinx population has outpaced the Latinx growth in science, technology, engineering, and math (STEM) degrees and occupation, further widening the ethnic gap in STEM. Mathematics has often identified as a bottleneck keeping many youth, especially minoritized youth, from pursuing STEM studies. Unequal opportunities to develop powerful math assets explain differences in math skills and understanding often experienced by minoritized youth. Implementing culturally responsive practices (CRP) in afterschool programs has the potential to promote math skills and motivation for youth from minoritized groups. However, extensive research is needed to understand which culturally responsive informal pedagogical practices (CIPPs) are most impactful and why. This project aims to identify and document such practices, shed light on the challenges faced by afterschool staff in implementing them, and develop training resources for afterschool staff to address these challenges. This project is funded by the Advancing Informal STEM Learning (AISL) Program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

The fundamental research questions addressed by the project focus on (1) which CIPPs matter most in the context of a STEM university-community partnership engaging Latinx youth, and (2) in what context(s) and under what conditions do these CIPPs relate to positive outcomes for both youth participants and college mentor/facilitator. A third aim is to build capacity of afterschool staff for implementing CIPPs in informal STEM afterschool programs. The first two aims are addressed through a mixed-methods research study which includes quantitative surveys and qualitative in-depth interviews with five cohorts of adolescent participants, parents, and undergraduate mentors. Each year, surveys will be collected from adolescents and mentors at four time points during the year; the in-depth interviews will be collected from adolescents, parents, and mentors in the spring. In total, 840 adolescents and 210 mentors will be surveyed; and 87 adolescents, 87 parents, and 87 mentors will be interviewed. The third aim will be addressed by leveraging the research findings and the collective knowledge developed by practitioners and researchers to create a public archive containing documentation of CIPPs for informal STEM afterschool programs and training modules for afterschool staff. The team will disseminate these resources extensively with informal afterschool practitioners in California and beyond. Ultimately, this project will lead to improved outcomes for minoritized youth in informal STEM afterschool programs across the nation, and increased representation of minoritized youth in STEM pursuits.
DATE: -
TEAM MEMBERS: Alessandra Pantano Sandra Simpkins Cynthia Sanchez Tapia
resource project Media and Technology
This project engages pre-college Latinx, Black, and Indigenous learners, educators, and collaborating undergraduates in an international, project-based learning and media-making community in areas of science, technology, engineering, and mathematics (STEM). The project addresses key challenges including broadening participation in informal STEM learning, developing capacity for leading informal STEM programs, and building stronger connections between STEM learning and personal and social identity formation during adolescence. The project’s community of participants is an asset-based learning environment that treats each participant, their background, skills, and interests as uniquely beneficial to the whole. Led by mentors at each hub (teachers, leaders from science organizations, or other out-of-school learning environments), participants collaborate with peers from the US and from other countries. The collaborations encompass a broad spectrum of STEM projects. Participants also create digital media to communicate their projects. The project activities reflect a focus on STEM content, collaboration, and communication, in a global context that includes school-age learners from the US and peers from Central and South America, the Middle East, Asia, and Sub-Sahara. The combination of the sophisticated STEM competencies skills for collaborating across international and cultural boundaries, and media-savvy communication abilities are essential to the nation’s future STEM workforce and to building a scientifically vibrant citizenry.

The project addresses two primary research questions co-developed with teachers and other informal science providers. The first research question involves understanding and optimizing conditions for broadening participation through this type of distributed or virtual collaboration across boundaries of culture, race, gender, ability, nationality, and socioeconomic status. The project features a design experiment by which the overall community of participants comprises four separate hubs, each hosted by the different project partners (primarily teachers). Educators devise, test, and revise alternative designs for organizing STEM collaborations. Publication of these teacher-led designs and their evaluation are among the primary outputs of the project. The designs modify and improve a template developed under this project’s proof-of-concept precursor (NSF1612824). The second research question addresses how growth in STEM abilities, collaboration, and communication mutually reinforce adolescent personal and social identity formation. Participating students in the US will intentionally reflect heterogeneous backgrounds. The project analysis will focus on whether cultural and national cross-boundary collaboration can strengthen the development of learners' personal identity and academic performance. The project methodology relies heavily on quantitative ethnography and epistemic network analysis. This approach enables the creation of visual models that highlight the presence or absence of connections between constructs relevant to each research question, along with changes between and within groups. The constructs include variations of autonomy, competence, and connection (pillars of self-determination theory) in tracing identity formation and STEM abilities. The quantitative ethnography approach provides statistically reliable scaffolding and insights about the hub designs and their efficacy in promoting goals of broadening participation and fostering mutually reinforcing STEM competencies and identity formation. This type of virtual collaboration, crossing boundaries of culture, nationality, ethnicity, age, gender, economic strata, or ability, can realistically be expected to play a significant role in next-generation learning environments, especially through out-of-school activities. The project is expected to reach 120 U.S. and 80 non-U.S. students annually. Research findings, design principles and curricula will be widely disseminated to researchers, designers, program developers, informal science institutions and community organizations.
DATE: -
TEAM MEMBERS: Eric Hamilton Nastassia Jones Danielle Espino Seung Lee
resource project Public Programs
Science identity has been shown to be a necessary precondition to academic success and persistence in science trajectories. Further, science identities are formed, in large part, due to the kinds of access, real or perceived, that (racialized) learners have to science spaces. For Black and Latinx youth, in particular, mainstream ideas of science as a discipline and as a culture in the US recognize and support certain learners and marginalize others. Without developing identities as learners who can do science, or can become future scientists, these young people are not likely to pursue careers in any scientific field. There are demonstrable links between positive science identities and the material and social resources provided by particular places. Thus, whether young people can see themselves as scientists, or even feel that they have access to science practices, also depends on where they are learning it. The overarching goal of this project is to broaden participation of Black and Latinx youth in science by deepening our understanding of both science identities and how science learning spaces may be better designed to support the development of positive science identities of these learners. By deepening the field’s knowledge of how science learning spaces shape science identities, science educators can design more equitable learning spaces that leverage the spatial aspects of program location, culturally relevant curriculum, and participants’ lived experiences. A more expansive understanding of positive science identities allows educators to recognize these in Black and Latinx learners, and direct their continued science engagements accordingly, as positive identities lead to greater persistence in science. This project is a collaboration between researchers at New York University and those at a New York City informal science organization, BioBus. It is funded by the Advancing Informal STEM Learning (AISL) Program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

This participatory design research project will compare three different formats, in different settings, of afterschool science programming for middle schoolers: one located in a lab space on the campus of a nearby university, one located in the public middle school building of participating students, and one aboard a mobile science lab. For purposes of this study, the construct of “setting” refers to the dimensions of geographic location, built physical environment, and material resources. Setting is not static, but instead social and relational: it is dynamically (co)constructed and experienced in activity by individuals and in interaction by groups of individuals. Therefore, the three BioBus programming types allow for productive comparison not only because of their different geographic locations, built environments, and material resources (e.g., scientific tools), but also the existing relationships learners may have with these places, as well as the instructional designs and pedagogical practices that BioBus teaching scientists use in each. This project uses a design-based research approach to answer the following research questions: (1) How do the settings of science learning shape science identity development? What are different positive science identities that may emerge from these relationships? And (2) What are ways to leverage different spatial aspects of informal science programming and instruction to support positive science identities? The study uses ethnographic and micro-analytic methods to develop better understandings of the relationships between setting and science identity development, uncover a broad range of types of positive science identities taken up by our Black and Latinx students, and inform informal science education to design for and leverage spatial aspects of programming and instruction. Findings will contribute to a systematic knowledge base bringing together spatial aspects of informal science education and science identity and identity development, and provide new tools for informal science educators, including design principles for incorporating spatial factors into program and lesson planning.
DATE: -
TEAM MEMBERS: Jasmine Ma Latasha Wright Roya Heydari
resource project Public Programs
This Innovations in Development project supports racially and ethnically diverse youth in learning about climate resilience in informal settings, including community centers, afterschool programs, and museums. The project aims to: (1) build the capacity of community organizations to implement youth programming on climate resilience; (2) increase youth knowledge, skills, and self-efficacy associated with climate resilience (also referred to as environmental health literacy for climate resilience); and (3) explore how collaborating research universities and community organizations engage diverse youth in informal STEM learning. Project partners include the UNC Institute for the Environment, the University of Washington-Interdisciplinary Center for Exposures, Diseases, Genomics and Environment, the North Carolina Museum of Natural Sciences, Juntos NC, and the Duwamish River Community Coalition (DRCC). Juntos NC and DRCC actively engage Latino and Indigenous youth in their programming and seek to implement resilience-focused programming that supports youth science learning and leadership development.

Together, informal educators and participating youth will develop locally relevant solutions to climate impacts in their communities. Youth will interact with university-based climate scientists and educators to collect and analyze data and will participate in resilience-focused dialogue, planning, and actions in their communities. Youth will share what they learn with their families and peers through family events and teen summits. The project will engage dozens of educators in community organizations and at least 250 youth, who will share what they learn with their families and communities, reaching hundreds more people through communications and local action projects. Mixed-methods assessment will provide insight into the extent participating youth (a) develop environmental health literacy for climate resilience, and (b) take action to address resilience in their home communities. The team will assess how these outcomes vary by location, and the implications of any variation on potential for project replication. A participatory evaluation, led by an external evaluator, will provide insight into empowerment outcomes. Findings will be disseminated to professional audiences at local and national conferences; and curricular materials from this project will be disseminated through the project website.
DATE: -
TEAM MEMBERS: Kathleen Gray Sarah Yelton
resource project Public Programs
The project will develop and research an after-school program designed to engage rural, Latinx youth in design thinking and math through making. Making is a learner-centered environment where participants design, create, and develop projects. Latinx individuals are underrepresented in the STEM workforce. The project will engage Latinx youth during the critical middle school years when young people make choices that affect their futures. The project will work with community members, after school staff, and youth as co-designers to develop and pilot the complete after school program. The program will involve Latinx youth who live in the agricultural regions of the Southwest United States with the goal of developing agency and positive identity, as makers, mathematical doers and users, and active community members. They will engage in developmentally appropriate mathematics, such as the volume and surface area of geometric shapes, within the context of informal learning projects. The program will comprise four semester-long after school projects, involving participants for 2-4 hours each week, during which time youth will design and create objects to address typical community challenges. Each project will incorporate smaller modules to enable youth with different attendance needs to participate. Real community problems (e.g., drought) and solution paths (e.g., water catchment system) will motivate the making and the mathematics. The program, co-designed in partnership with the Cesar Chavez Foundation, promises to reach 100,000 youth over the next decade. Because the program can serve as a model for others with similar goals, this reach has the potential to be expanded in many other communities.

Project research will address a gap in the current literature on mathematics, making, and community membership. The project connects community mathematics—the rich mathematical knowledge and practices drawn from communities—to educational making to both enrich understanding of school mathematics and aid in developing students’ positive mathematical and cultural identities. The project will also result in a model of professional development that can be used and studied by after school programs and researchers, contributing to the limited body of knowledge of professional development on STEM making for after school facilitators. The research design for this project will follow a mixed methods approach where quantitative and qualitative data collection and analysis will occur simultaneously. Results of both strands will be brought together at the interpretation and reporting level to compare and bring out the convergence, divergence, or complementarity of findings. The research will take place in two stages (co-design and pilot) over 3 years, with an additional half year for developing communications of the findings. Research will address the following questions: (1) What are the key features of projects for integrating community mathematics, school mathematics understanding, and design/making? (2) How do facilitators support the youth in engaging in program activities? (3) What math content and practices do youth learn through participation in program activities? and (4) How do youth’s agency and identity as makers, mathematics doers and users, and community members change with participation in the program? Program research and resources will be disseminated nationally through the Cesar Chavez Foundation and by sharing project research and resources through publications and conference presentations reaching researchers, educators, and program developers.
DATE: -
TEAM MEMBERS: Teresa Lara-Meloy Celia Alvarado Nuria Jaumot-Pascual Jennifer Knudsen
resource project Professional Development, Conferences, and Networks
Centering Native Traditional Knowledge within informal STEM education programs is critical for learning for Native youth. In co-created, place-based learning experiences for Native youth, interweaving cultural traditions, arts, language, and community partnerships is vital for authentic, meaningful learning. Standardized STEM curricula and Western-based pedagogies within the mainstream and formal education systems do not reflect the nature of Native STEM knowledge, nor do they make deep connections to it. The absence of this knowledge base can reinforce a deficit-based STEM identity, which can directly impact Native youths’ participation and engagement in STEM. Reframing STEM education for Native youth to prioritize the vitality of community and sustainability requires active consideration of what counts as science learning and who serves as holders and conduits of STEM knowledge. As highly regarded holders of traditional and western STEM knowledge, Native educators and cultural practitioners are critical for facilitating Native youths’ curiosity and engagement with STEM. This Innovations in Development project is Native-led and centers Native knowledge, voice, and contributions in STEM through a culturally based, dual-learning approach that emphasizes traditional and western STEM knowledge. Through this lens, a network of over a dozen tribal nations across 20 U.S. states will be established to support and facilitate the learning of Traditional and Western STEM knowledge in a culturally sustaining manner. The network will build on existing programs and develop a set of unique, interconnected, and synchronized placed-based informal STEM programs for Native youth reflecting the distinctive cultural aspects of Native American and Alaska Native Tribes. The network will also involve a Natives-In-STEM Role Models innovation, in which Native STEM professionals will provide inspiration to Native youth through conversations about their journeys in STEM within cultural contexts. In addition, the network will cultivate a professional network of STEM educators, practitioners, and tribal leaders. Network efforts and the formative evaluation will culminate in the development and dissemination of a community-based, co-created Framework for Informal STEM Education with Native Communities.

Together with Elders and other contributors of each community, local leads within the STEM for Youth in Native Communities (SYNC) Network team will identify and guide the STEM content topics, as well as co-create and implement the program within their sovereign lands with their youth. The content, practitioners, and programming in each community will be distinct, but the community-based, dual learning contextual framework will be consistent. Each community includes several partner organizations poised to contribute to the programming efforts, including tribal government departments, tribal and public K-12 schools, tribal colleges, museums and cultural centers, non-profits, local non-tribal government support agencies, colleges and universities, and various grassroots organizations. Programmatic designs will vary and may include field excursions, summer and after school STEM experiences, and workshops. In addition, the Natives-In-STEM innovation will be implemented across the programs, providing youth with access to Native STEM professionals and career pathways across the country. To understand the impacts of SYNC’s efforts, an external evaluator will explore a broad range of questions through formative and summative evaluations. The evaluation questions seek to explore: (a) the extent to which the culturally based, dual learning methods implemented in SYNC informal STEM programs affect Native youths’ self-efficacy in STEM and (b) how the components of SYNC’s overall theoretical context and network (e.g., partnerships, community contributors such as Elders, STEM practitioners and professionals) impact community attitudes and behaviors regarding youth STEM learning. Data and knowledge gained from these programs will inform the primary deliverable, a Framework for Native Informal STEM Education, which aims to support the informal STEM education community as it expands and deepens its service to Native youth and communities. Future enhanced professional development opportunities for teachers and educators to learn more about the findings and practices highlighted in the Framework are envisioned to maximize its strategic impact.
DATE: -
TEAM MEMBERS: Juan Chavez Daniella Scalice Wendy Todd
resource project Informal/Formal Connections
This project is expanding an effective mobile making program to achieve sustainable, widespread impact among underserved youth. Making is a design-based, participant-driven endeavor that is based on a learning by doing pedagogy. For nearly a decade, California State University San Marcos has operated out-of-school making programs for bringing both equipment and university student facilitators to the sites in under-served communities. In collaboration with four other CSU campuses, this project will expand along four dimensions: (a) adding community sites in addition to school sites (b) adding rural contexts in addition to urban/suburban, (c) adding hybrid and online options in addition to in-person), and (d) including future teachers as facilitators in addition to STEM undergraduates. The program uses design thinking as a framework to engage participants in addressing real-world problems that are personally and socially meaningful. Participants will use low- and high-tech tools, such as circuity, coding, and robotics to engage in activities that respond to design challenges. A diverse group of university students will lead weekly, 90-minute activities and serve as near-peer mentors, providing a connection to the university for the youth participants, many of whom will be first-generation college students. The project will significantly expand the Mobile Making program from 12 sites in North San Diego County to 48 sites across California, with nearly 2,000 university facilitators providing 12 hours of programming each year to over 10,000 underserved youth (grades 4th through 8th) during the five-year timeline.

The project research will examine whether the additional sites and program variations result in positive youth and university student outcomes. For youth in grades 4 through 8, the project will evaluate impacts including sustained interest in making and STEM, increased self-efficacy in making and STEM, and a greater sense that making and STEM are relevant to their lives. For university student facilitators, the project will investigate impacts including broadened technical skills, increased leadership and 21st century skills, and increased lifelong interest in STEM outreach/informal science education. Multiple sources of data will be used to research the expanded Mobile Making program's impact on youth and undergraduate participants, compare implementation sites, and understand the program's efficacy when across different communities with diverse learner populations. A mixed methods approach that leverages extant data (attendance numbers, student artifacts), surveys, focus groups, making session feedback forms, observations, and field notes will together be used to assess youth and university student participant outcomes. The project will disaggregate data based on gender, race/ethnicity, grade level, and site to understand the Mobile Making program's impact on youth participants at multiple levels across contexts. The project will further compare findings from different types of implementation sites (e.g., school vs. library), learner groups, (e.g., middle vs. upper elementary students), and facilitator groups (e.g., STEM majors vs. future teachers). This will enable the project to conduct cross-case comparisons between CSU campuses. Project research will also compare findings from urban and rural school sites as well as based on the modality of teaching and learning (e.g., in-person vs. online). The mobile making program activities, project research, and a toolkit for implementing a Mobile maker program will be widely disseminated to researchers, educators, and out-of-school programs.
DATE: -
TEAM MEMBERS: Edward Price Frank Gomez James Marshall Sinem Siyahhan James Kisiel Heather Macias Jessica Jensen Jasmine Nation Alexandria Hansen Myunghwan Shin
resource project Public Programs
Many Black youth in both urban and rural areas lack engaging opportunities to learn mathematics in a manner that leads to full participation in STEM. The Young People’s Project (YPP), the Baltimore Algebra Project (BAP), and the Education for Liberation Network (EdLib) each have over two decades of experience working on this issue. In the city of Baltimore, where 90% of youth in poverty are Black, and only 5% of these students meet or exceed expectations in math, BAP, a youth led organization, develops and employs high school and college age youth to provide after-school tutoring in Algebra 1, and to advocate for a more just education for themselves and their peers. YPP works in urban or rural low income communities that span the country developing Math Literacy Worker programs that employ young people ages 14-22 to create spaces to help their younger peers learn math. Building on these deep and rich experiences, this Innovations in Development project studies how Black students see themselves as mathematicians in the context of paid peer-to-peer math teaching--a combined social, pedagogical, and economic strategy. Focusing primarily in Baltimore, the project studies how young people grow into new self-definitions through their work in informal, student-determined math learning spaces, structured collaboratively with adults who are experts in both mathematics and youth development. The project seeks to demonstrate the benefits of investing in young people as learners, teachers, and educational collaborators as part of a core strategy to improve math learning outcomes for all students.

The project uses a mixed methods approach to describe how mathematical identity develops over time in young people employed in a Youth-Directed Mathematics Collaboratory. 60 high school aged students with varying mathematical backgrounds (first in Baltimore and later in Boston) will learn how to develop peer- and near-peer led math activities with local young people in informal settings, after-school programs, camps, and community centers, reaching approximately 600 youth/children. The high school aged youth employed in this project will develop their own math skills and their own pedagogical skills through the already existing YPP and BAP structures, made up largely of peers and near-peers just like themselves. They will also participate in on-going conversations within the Collaboratory and with the community about the cultural significance of doing mathematics, which for YPP and BAP is a part of the ongoing Civil Rights/Human Rights movement. Mathematical identity will be studied along four dimensions: (a) students’ sequencing and interpretation of past mathematical experiences (autobiographical identity); (b) other people’s talk to them and their talk about themselves as learners, doers, and teachers of mathematics (discoursal identity); (c) the development of their own voices in descriptions and uses of mathematical knowledge and ideas (authorial identity); and (d) their acceptance or rejection of available selfhoods (socio-culturally available identity). Intended outcomes from the project include a clear description of how mathematical identity develops in paid peer-teaching contexts, and growing recognition from both local communities and policy-makers that young people have a key role to play, not only as learners, but also as teachers and as co-researchers of mathematics education.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Jay Gillen Maisha Moses Thomas Nikundiwe Naama Lewis Alice Cook
resource project Public Programs
This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential science, technology, engineering, and mathematics (STEM) learning from short duration experiences such as field trips. Although informal learning experiences can greatly contribute to interest in and knowledge of science, there is a shared concern among educators and researchers that students may have difficulty recalling and using scientific information and practices emphasized during these experiences, even though doing so would further their science learning. Nonetheless, science learning is rarely, if ever, a "one-shot deal." Children acquire knowledge about science cumulatively across different contexts and activities. Therefore, it is important that informal science learning institutions identify effective practices that support the consolidation of learning and memory from exhibit experiences to foster portable, usable knowledge across contexts, such as from informal science learning institutions, to classrooms, and homes. To this end, this Research in Service to Practice project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences. The project promises to increase learning for the 9,000+ 5th and 6th grade students from across the rurality and growing diversity of the state of Maine who annually participate in LabVenture, a 2.5-hour exploration of the Gulf of Maine ecosystem at Gulf of Maine Research Institute. The research will provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions. This project is funded by the Advancing Informal STEM Learning (AISL) and the Discovery Research PreK-12 (DRK-12) programs. It supports the AISL program goals to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. It supports the DRK-12 program goal of enhancing the learning and teaching of STEM by preK-12 students and teachers.

The project is grounded in the idea that visual representations, including drawings, can both enhance science learning and encourage reflection on doing science that can support extension of that learning beyond a singular informal science experience. The project uses design-based research to address the following research questions: (1) Does reflection during an informal science learning experience promote students’ retention and subsequent use of science information and practices that are part of the experience? (2) Does interpreting and constructing visual representations, such as drawings, improve students’ understanding and retention of information, and if so, how and when? and (3) Does combining visual representations and narrative reflections confer benefits on students’ science learning and engagement in science practices both during the informal learning experience, and later in their classrooms and at home? These questions will be pursued in collaboration with practitioners (both informal educators and classroom teachers) and a diverse team of graduate and undergraduate student researchers. Approximately 600 student groups (roughly 3000 individual students) will be observed during the LabVenture experience, with further data collection involving a portion of these students at school and at home. The project will yield resources and video demonstrations of field-tested, empirically based practices that promote engagement with visual representations and reflection, and science understandings that can travel within students' learning ecosystem. In support of broadening participation, the undergraduate/graduate student researchers will gain wide understanding and experience connecting research to practice and communicating science to academic and nonacademic audiences.
DATE: -
TEAM MEMBERS: David Uttal Amanda Dickes Leigh Peake Catherine Haden
resource project Public Programs
Milwaukee has established itself as a leader in water management and technology, hosting a widely recognized cluster of industrial, governmental, nonprofit, and academic activity focused on freshwater. At the same time, Milwaukee faces a wide range of challenges with freshwater, some unique to the region and others common to cities throughout the country. These challenges include vulnerability to flooding and combined sewer overflows after heavy rainfall, biological and pharmaceutical contamination in surface water, lead in drinking water infrastructure, and inequity in access to beaches and other recreational water amenities. Like other cities, Milwaukee grapples with the challenges global climate change imposes on urban water systems, including changing patterns of precipitation and drought.

These problems are further complicated by Milwaukee's acute racial and economic residential segregation. With a population of approximately 595,000, embedded within a metropolitan area of over 1.5 million, Milwaukee remains one of the country's most segregated cities. There is increasing urgency to engage the public--and especially those who are most vulnerable to environmental impacts--more deeply in the stewardship of urban water and in the task of creating sustainable urban futures. The primary goal of this four-year project is to foster community-engaged learning and environmental stewardship by developing a framework that integrates art with Science, Technology, Engineering, and Mathematics (STEM) experiences along with geography, water management, and social science. Synergies between STEM learning and the arts suggest that collaborations among artists, scientists, and communities can open ways to bring informal learning about the science of sustainability to communities.

WaterMarks provides an artist generated conceptual framework developed by Mary Miss / City as Living Laboratory (CALL) to help people better understand their relationship to the water systems and infrastructure that support their lives. Project activities include artist/scientist/community member-led Walks, which are designed to engage intergenerational participants both from the neighborhoods and from across the city, in considering the conditions, characteristics, histories, and ecosystems of neighborhoods. Walks are expanded upon in Workshops with residents, local scientists/experts, and other stakeholders, and include exploring current water-related environmental challenges and proposing solutions. The Workshops draw on diverse perspectives, including lived experience, scientific knowledge, and policy expertise. Art projects created by local artists amplify community engagement with the topics, including programming for teens and young adults. Free Wi-Fi will be integrated into various Marker sites around the city providing access to online, self-guided learning opportunities exploring the water systems and issues facing surrounding neighborhoods. Current programming focuses primarily on Milwaukee's predominantly African American near North Side and the predominantly Latinx/Hispanic near South Side. Many neighborhoods in these sections are vulnerable to such problems as frequent flooding, lead contamination in drinking water, inequities in safety and maintenance of green space, and less access to Lake Michigan, the city's primary natural resource and recreational amenity.

The WaterMarks project advances informal STEM learning in at least two ways. First, while the WaterMarks project is designed to fit Milwaukee, the project includes the development of an Adaptable Model Guide. The Guide is designed so that other cities can modify and employ its inclusive structure, programming, and process of collaboration among artists, scientists, partner organizations, and residents to promote citywide civic engagement in urban sustainability through the combination of informal STEM learning and public art. The Guide will be developed by a Community-University Working Group (CULab) hosted by UW-Milwaukee's Center for Community-Based Learning, Leadership, and Research and made up of diverse community and campus-wide stakeholders. In addition to overseeing the Guide’s creation, CULab will conceptualize onboarding and mentorship strategies for new participants as well as a framework for the program’s expansion and sustainability.

Second, through evaluation and research, the project will build a theoretical model for the relationships among science learning, engagement with the arts, and the distinctive contexts of different neighborhoods within an urban social-ecological system. The evaluation team, COSI’s Center for Research and Evaluation, and led by Co-PI Donnelly Hayde, aims to conduct formative, summative, and process evaluation of the Watermarks project, with the additional goal of producing evaluative research findings that can contribute to the broader field of informal learning. Evaluation foci include: How does the implementation of WaterMarks support positive outcomes for the project’s communities and the development of an adaptable model for city-scale informal science learning about urban environments? 2. To what extent do the type and degree of outcome-related change experienced by participating community residents vary across and/or between project sites? What factors, if any, appear to be linked to these changes? 3. To what extent and in what ways do the activities of the WaterMarks projects appear to have in situ effects related to the experience of place at project sites?

The project’s research team led by PI Ryan Holifield and Co-PI Woonsup Choi, will investigate how visual artistic activities introduced by the programming team as part of the Walks (and potentially other engagement activities) interact with personal, sociocultural, and physical contexts to produce distinctive experiences and outcomes of informal science learning about urban water systems. The aim of the research will be to synthesize the results from the different WaterMarks sites into an analysis generalizable beyond specific neighborhoods and applicable to other cities. The project's research questions include: 1. How does participation in Walks focused on visual artistic activities affect outcomes and experiences of informal STEM learning about urban water systems? 2. How do outcomes and experiences of informal STEM learning vary across different urban water topics, participants from different demographic groups, and contrasting sociocultural and biophysical contexts?

This Innovations in Development project is led by the University of Wisconsin-Milwaukee (UWM), in collaboration with City as Living Laboratory (CALL) and the COSI Center for Research and Evaluation.
DATE: -
resource project Media and Technology
This project will scale up fully virtual or face-to-face STEM professional development to afterschool educators in both urban and rural settings. Given that many afterschool educators have little or no background in STEM education, there is demand for professional development that is effective, inexpensive, and accessible. This project will build national capacity in STEM education by developing the STEM skills of over 1,500 educators across multiple states and will ultimately impact over 31,000 under-represented youth in these areas. The project will also deliver robust materials through a free open-source mechanism, for use by educators anywhere and anytime. The project will broaden participation in STEM by engaging community educators in the rural parts of the nation, a critically under-represented group in STEM. It will also reach educators from low-income urban communities across three states and seven cities, targeted through strategic networks and partnerships, including organizations such as the YMCA, 4-H, and the National Afterschool Association.

This collaborative project is scaling the ACRES model (Afterschool Coaching for Reflective Educators in STEM). The model humanizes the virtual experience, making it social and engaging, and allows educators to learn, share, and practice essential STEM facilitation skills with a focus on making STEM relevant and introducing STEM careers to youth. In addition to enhancing the professional STEM skills of rural and urban educators, the project will create a national cohort of coaches with deep expertise in (i) converting in-person activities for youth into a highly engaging, choice-rich online format, (ii) engaging isolated informal educators in supportive professional learning communities, and (iii) coaching foundational research-based STEM facilitation skills that ensure these activities are pedagogically sound. A key part of this broad implementation project involves studying how to integrate an effective professional development program into afterschool organizations, including the ways afterschool programs adapt the materials to be culturally responsive to their local communities. The researchers will also study factors contributing to the longer-term sustainability of the program. The research will use surveys, interviews, direct observations, and case studies of participants to provide the field with valuable insights into scaling a program in the afterschool world.

This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for extending access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -