Skip to main content

Community Repository Search Results

resource research Media and Technology
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Marti Louw Kevin Crowley Camellia Sanford
resource research Media and Technology
This poster was presented at the 2021 NSF AISL Awardee Meeting. To engage youth in global challenges such as energy issues, students’ own community can serve as personally relevant venues for scientific inquiry. For example, after students learn about heat transfer in school, they can use this knowledge to inspect the energy efficiency of their own schools and public buildings in their neighborhood. To bridge the gap between school science and citizen science, students need scientific instruments that can be used both in and out of school and a community to share their discoveries.
DATE:
TEAM MEMBERS: Rundong Jiang Xiaotong Ding Joy Massicotte Rundong Jiang Kim Spangenberg Shannon Sung
resource evaluation Media and Technology
WGBH received funding to develop and create NOVA Labs, an online environment that provides teen audiences with an online research lab, educational content, and the opportunity to engage with authentic data, tools, and processes to investigate scientific questions. This work has begun with the development of a first pilot lab, called The Sun Lab. NOVA Education created and launched this lab in early summer 2012. Examining the site in its pilot form, the Lifelong Learning Group (LLG) engaged in a formative evaluation to support refinements and improvements in the design of subsequent NOVA Lab
DATE:
TEAM MEMBERS: NOVA Brooke Havlik Jessica Sickler
resource project Media and Technology
NOVA Labs (pbs.org/nova/labs) is a free digital platform that engages teens and lifelong learners in activities and games that foster authentic scientific exploration. From building RNA molecules and designing renewable energy systems to tracking cloud movements and learning cybersecurity strategies, NOVA Labs participants can take part in real-world investigations by visualizing, analyzing, and playing with the same data that scientists use. Each Lab focuses on a different area of active research. But all of them illustrate key concepts with engaging and informative videos, and guide participants as they answer scientific questions or design solutions to current problems. Supporting pages on each Lab site explain the purpose and functions of the Lab, help teachers incorporate it into their classrooms, foster collaboration between users, and help users make connections to the broader world of STEM. Users are encouraged to explore potential career paths through “Meet the Scientists” profiles, and to obtain information about local and national STEM resources.
DATE:
TEAM MEMBERS: NOVA Brooke Havlik
resource research Public Programs
This article explores the roots of the citizen science movement. It uses several ongoing projects as examples, including the Audubon's Christmas Bird Count, research into bee colony collapse, and nanotechnology programs. The article concludes by providing guidance for the development of future citizen science projects, focusing on an increased dialogue between traditional and informal science education.
DATE:
TEAM MEMBERS: Michael Mueller Deborah Tippins Lynn Bryan
resource project Media and Technology
The University of Pittsburgh's Center for Learning in Out-of-School Environments (UPCLOSE), the Carnegie Museum of Natural History, and the Robotics Institute at Carnegie Mellon University are building an open access cyberlearning infrastructure that employs super high-resolution gigapixel images as a tool to support public understanding, participation, and engagement with science. Networked, gigapixel image technology is an information and communication technology that creates zoomable images that viewers can explore, share, and discuss. The technology presents visual information of scientifically important content in such detail that it can be used to promote both scientific discovery and education. The purpose of the project is to make gigapixel technology accessible and usable for informal science educators and scientists by developing a robotic imaging device and online services for the creation, storage, and sharing of billion-pixel images of scientifically important content that can be analyzed visually. Project personnel are conducting design activities, user studies, and formative evaluation studies to support the development of a gigapan technology platform for demonstration and further prototyping. The project builds on and leverages existing technologies to provide informal science education organizations use of gigapixel technology for the purpose of facilitating three types of activities that promote participatory learning by the public--Public Understanding of Science activities; Public Participation in Scientific Research activities; and Public Engagement in Science activities. The long-terms goals of the work are to (1) create an accessible database of gigapixel images that informal science educators can use to facilitate public-scientist interactions and promote participatory science learning, (2) characterize and demonstrate the affordances of networked gigapixel technologies to support socially-mediated, science-focused cyberlearning experiences, (3) generate knowledge about how gigapixel technology can enable three types of learning interactions between scientists and the public around visual data, and (4) disseminate findings that describe the design, implementation, and evaluation of the gigapixel platform to support participatory science learning. The project\'s long-term strategic impacts include guiding the design of high-resolution images for promoting STEM learning in both informal and formal settings, developing an open educational resource and science communication platform, and informing informal science education professionals about the use and effectiveness of gigapixel images in promoting participatory science learning by the public.
DATE: -
resource project Public Programs
Through the proposed project, approximately 555,000 youth and adults will improve their knowledge of the basic sciences and mathematics, and learn to integrate and apply these disciplines, by analyzing local environmental problems using remote sensing imagery and maps. Faculty from the Cornell laboratory for Environmental Applications of Remote Sensing (CLEARS) and Cornell Department of Natural Resources will train county teams of teachers, museum and nature center educators, community leaders, and Cooperative Extension agents from throughout New York State to conduct educational programs with youth and adults in their communities. Previously developed CLEARS educator enrichment workshops and training materials will be enhanced and revised based on the interactions among Cornell Faculty, informal and formal science educators, and students during this program. A facultative evaluation focusing on the workshops, training materials, and educator teaching skills, and a summative evaluation focusing on student learning and attitudes, program delivery in the various community education settings, and the effectiveness of the county educator teams will be conducted. The results of the evaluation will be incorporated into a program handbook and used in nationwide dissemination of the program.
DATE: -
TEAM MEMBERS: Eugenia Barnaba Marianne Krasny
resource project Public Programs
Understanding the Science Connected to Technology (USCT) targets information technology (IT) experiences in a comprehensive training program and professional support system for students and teachers in science, technology, engineering and mathematics (STEM). Participants have opportunities to assume leadership roles as citizen volunteers within the context of science and technology in an international watershed basin. Training includes collection, analysis, interpretation and dissemination of scientific data. BROADER IMPACTS: Building on a student volunteer monitoring program called River Watch, the USCT project enables student scientists to conduct surface water quality monitoring activities, analyze data and disseminate results to enhance local decision-making capacity. The project incorporates state and national education standards and has the potential to reach 173 school jurisdictions and 270,000 students. USCT will directly impact 81 teachers, 758 students and 18 citizen volunteers. The USCT project provides direct scientist mentor linkages for each participating school. This linkage provides a lasting process for life-long learning and an understanding of how IT and STEM subject matter is applied by resource professionals. Broader impacts include accredited coursework for teachers and students, specialized training congruent with the "No Child Left Behind Act of 2001," and building partnerships with Native American schools. INTELLECTUAL MERIT: The USCT project is designed to refocus thinking from static content inside a textbook to a process of learning that includes IT and STEM content. The USCT engages students (the next generation of decision makers) in discovery of science and technology and expands education beyond current paradigms and political jurisdictions.
DATE: -
TEAM MEMBERS: Charles Fritz Gerald VanAmburg