Skip to main content

Community Repository Search Results

resource project Media and Technology
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.

The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Harry Mairson
resource project Professional Development, Conferences, and Networks
This NSF INCUDES Design and Development Launch Pilot will increase the recruitment, retention, and matriculation of racial and ethnic minorities in STEM Ph.D. programs contributing to hazards and disaster research. Increasing STEM focused minorities on hazards mitigation, and disaster research areas will benefit society and contribute to the achievements of specific, desired societal outcomes following disasters. The Minority SURGE Capacity in Disasters (SURGE) launch pilot will provide the empirical research to identify substantial ways to increase the underrepresentation of minorities in STEM disciplines interested in hazards mitigation and disaster research. Increasing the involvement of qualified minorities will help solve the broader vulnerability concerns in these communities and help advance the body of knowledge through the diversity of thought and creative problem solving in scholarship and practice. Utilizing workshops and a multifaceted mentorship program SURGE creates a new model that addresses the diversity concerns in both STEM and disaster fields, and make American communities more resilient following natural disasters. This project will be of interest to policymakers, educators and the general public.

The Minority SURGE Capacity in Disasters (SURGE) NSF INCLUDES Design and Development Launch Pilot will enhance the social capital of racial and ethnic minority communities by increasing their networks, connections, and access to disaster management decision-making among members of their community from STEM fields. The four-fold goals of SURGE are to: (1) increase the number of minority graduate researchers in STEM fields with a disaster focus; (2) develop and guide well-trained, qualified disaster scholars from STEM fields; (3) provide academic and professional mentorship for next generation minority STEM scholars in hazards mitigation and disaster research; and (4) develop professional and research opportunities that involve outreach and problem solving for vulnerable communities in the U.S. The SURGE project is organized as a lead-organization network through the University of Nebraska at Omaha and includes community partners. As a pilot project, SURGE participation is limited to graduate students from research-intensive universities across the country. Each student will attend workshops and training programs developed by the project leads. SURGE investigators will conduct project evaluation and assessment of their workshops, training, and mentorship projects. Results from evaluations and assessments will be presented at STEM and disaster-related conferences and published in peer-reviewed academic journals.
DATE: -
TEAM MEMBERS: DeeDee Bennett Lori Peek Terri Norton Hans Louis-Charles
resource project Higher Education Programs
The Broadening Experience for Scientific Training: Beginning Enhancement Track ("BEST-BET"), an NSF INCLUDES Design and Development Launch Pilot project, draws upon the expertise of five research-intensive institutions that have developed innovative programing in career and professional development for doctoral and postdoctoral trainees in biomedical research. The goal of the project is to expand the scope and leverage the work so as to engage students earlier in their career exploration. Specifically, the project will target undergraduates who may not be aware of the multitude of career options available to them. These include opportunities in academia, the biotechnology and pharmaceutical industries, science communication, science policy, and technology transfer/patent law. The effort will focus on undergraduates who come from populations generally underrepresented in STEM fields, including but not limited to ethnically, racially and socioeconomically underserved communities. The grant will support educational opportunities for students at minority-serving institutions and will assess the impact of providing new opportunities to this community. The critical contributions of a diverse and inclusive community are essential to progress in all STEM fields. By promoting diversity in education, this project aims to engage undergraduate students at a point in their professional development that could enable participation in a wide range of workforce opportunities so as to advance the progress of science and national health.

The focus of BEST BET will be to use a collective impact framework to connect the "BEST network" of institutions to partners engaged in undergraduate education of students from underrepresented communities who are interested in the life sciences. The underlying premise is that career exploration focused on opportunities that go beyond physician training will enable engagement of this community of learners in the life science workforce beyond the pre-med track and keep them engaged in degree completion. Multiple strategies will be used to attain the goals of BEST BET. They are organized in the context of two major objectives roughly divided into the scope of planned activities. The first objective focuses on "career exploration" and offers strategies to assist partner institutions to build career and skill development capacities. The second is grounded in an enhanced experience of BEST site visits whereby undergraduates will have the opportunity to envision life as a graduate student and beyond. These strategies will likely enhance persistence to complete the baccalaureate degree and move onto doctoral programs.
DATE: -
TEAM MEMBERS: Linda Hyman
resource project Public Programs
This project is a Design and Development Launch Pilot (DDLP) of the NSF INCLUDES program. The goal of the project is to enhance the knowledge and applicability of science, technology, engineering, and mathematics (STEM) for a broad cross-section of people living in the U.S,-Affiliated Pacific Islands. The focus will be on water resources, which is an extremely important topic for this region and equally relevant nationally. The project will engage local community groups and schools in water monitoring, sampling, and analysis, in order to promote the benefits of science education and careers among a population that is underrepresented in these areas. Moreover, the project will improve the capabilities of the island residents for making decisions about sustainable use and protection of these scarce resources. A functioning network will be established among the islands that will have a positive impact on the health and well-being of the residents.

This project will use water as a highly relevant topic in order to involve a wide range of individuals in both general STEM learning and the basic scientific principles as applied to water resources. Specific aspects include engaging K-12, higher education, informal educators and community members to manage water resources in a sustainable fashion that will reduce disaster risk. In addition, the project will empower local communities through water literacy to make better informed, evidence-based decisions that balance the needs of diverse stakeholder groups. The overarching goal is to further advance the inclusion of underrepresented learners in STEM fields. Benefits to society will accrue by: increasing STEM learning opportunities for ~6,500 students from underserved and underrepresented Indigenous Pacific Islanders that will enhance their eligibility for STEM careers; building community resiliency through a collective impact network to resolve emerging water crises; and fostering collaboration among different constituencies in remote communities to make better-informed decisions that reflect the needs and constraints of diverse interests.
DATE: -
TEAM MEMBERS: Ming Wei Koh Ethan Allen
resource project Higher Education Programs
Often called "self-plagiarism," text recycling occurs frequently in scientific writing. Over the past decade, increasing numbers of scientific journals have begun using plagiarism detection software to screen submitted manuscripts. As a result, large numbers of cases of text recycling are being identified, yet there is no consensus on what constitutes ethically acceptable practice. Text recycling is thus an increasingly important and controversial ethical issue in scientific communication. However, little actual research has been conducted on text recycling and it is rarely addressed in the ethical training of researchers or in scientific writing textbooks or websites. To promote the ethical and appropriate use of text recycling, this project will be conducted in two phases: In Phase 1, the researchers will investigate the ethical, practical, and legal aspects of text recycling as relevant for professional researchers, students, and publishers. In Phase 2, the investigators will produce educational materials and develop model language for text recycling guidelines and author-publisher contracts that can be adapted by educational institutions, research organizations, and publishers.

This project is a multi-institutional, multidisciplinary investigation of text recycling, the reuse of material from one?s previous work in a new manuscript. In Phase 1, the researchers will investigate questions such as these: What do expert researchers, students, and others involved in scientific communication believe to be appropriate practice, and why? Where is there a clear consensus among experts and where is there substantive disagreement? How often do professional scientists actually recycle material, and in what ways? Under what circumstances does text recycling violate publisher contracts or copyright laws? One facet of this research will involve interviewing and surveying experienced STEM faculty, students, journal editors, and others regarding the ethics of text recycling. A second facet will analyze a corpus of published scientific papers to investigate how researchers recycle text in practice and how this has changed over time. The third facet involves analyzing publisher contracts to better understand the rights of publishers and authors regarding text recycling and to assess their legal validity. In Phase 2, the investigators will use findings from Phase 1 to develop, test, and disseminate two kinds of materials: The first are web and print based instructional materials for STEM students (and others new to STEM research) explaining the ethical, legal, and practical issues involved with text recycling, as well as accompanying documents for faculty, administrators, and librarians. The second are model policies and guidelines for text recycling that address appropriate practice in both academic and professional settings. The investigators will obtain feedback on drafts of these materials from potential users and revise them accordingly, after which they will be disseminated.
DATE: -
TEAM MEMBERS: Cary Moskovitz
resource project Public Programs
A public event series, “Ecohumanities for Cities in Crisis,” will bring humanities scholars and the public together in Miami, FL to discuss the tension between humans and nature over hundreds of years. Miami is on the verge of an environmental crisis from a warming planet and rising seas. As the region grapples with policy and science issues, humanities scholars have a unique role to play. The project will frame humanistic discussion about urban environments, risk, and resilience. The centerpiece is a public forum in March 2016 which includes a plenary of scholars from diverse humanities disciplines, a walking tour, and a panel on diversity and justice in environmental advocacy. There will be five subsequent public programs through the Fall 2016, an on online archive of all events, professional development activities for high school teachers, a graduate public environmental history course, and a curated museum exhibit.
DATE: -
TEAM MEMBERS: April Merleaux
resource research Informal/Formal Connections
In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews, electronic communications, and drawing prompts. We found that our two participants referenced as important the ISE experiences in their development of classroom science identities that included resilience, excitement and engagement in science
DATE:
TEAM MEMBERS: Phyllis Katz J. Randy McGinnis Kelly Riedinger Gili Marbach-Ad Amy Dai
resource research Informal/Formal Connections
Research Universities and the Future of America presents critically important strategies for ensuring that our nation's research universities contribute strongly to America's prosperity, security, and national goals. Widely considered the best in the world, our nation's research universities today confront significant financial pressures, important advances in technology, a changing demographic landscape, and increased international competition. This report provides a course of action for ensuring our universities continue to produce the knowledge, ideas, and talent the United States needs to
DATE:
TEAM MEMBERS: National Research Council
resource research Informal/Formal Connections
American Chemical Society President Bassam Z. Shakhashiri appointed and charged this Commission to undertake a wholesale review of graduate education in the chemical sciences over a yearlong period. This document is a compact rendition of the Commission's final report, emphasizing only main conclusions and recommendations. The Commission judges that the sate of graduate education in the chemical sciences is healthy in many respects, but has not kept pace with the significant changes in the world's economic, social, and political environment since the end of World War II, when the current
DATE:
TEAM MEMBERS: American Chemical Society
resource project Media and Technology
NOVA'S CENTURY OF DISCOVERY is a series of five prime-time documentary specials to be shown nationally over the Public Broadcasting Service(PBS) during late 1997 or early 1998. Altogether the programs will tell a sweeping story, celebrating the end of a remarkable century of discovery when science advance further than in all previous centuries combined, and when every scientific discipline underwent a revolution. Yet the closing of the 20th century coincides with an ever-widening gap between what scientists know and what most of the public comprehends. To increase public understanding of science, scientists, and scientific methods, the series will provide a dramatic retelling and interpretation of the century's most enduring scientific endeavors. Each two-hour program will probe several related fields of investigation and application: views of the universe and of matter; origins of the planet and of life; health, medicine, and the human body; human nature and behavior; and technology and engineering. A marriage of scholarship and entertainment, NOVA'S CENTURY OF DISCOVERY will be created using all the tools at the command of its award winning production team including archival footage and stills; personal accounts; letters, dairies, and other primary sources; computer animation; and even dramatic re-creations. Indeed, the series will not only make a unique contribution to the public and historical record, but also offer viewers an unprecedented opportunity to view 100 years of scientific pursuits as a unified whole, to recast their perceptions of science and scientists, and to be intrigued, even inspired, by a view of science as a never-ending and very human quest for answers and solutions. A special outreach and promotion campaign will increase audience awareness of the series, particularly among nontraditional PBS viewers. In addition, carefully developed teaching and learning materials will extend the series' reach into formal and informal educational settings, including high school and college classrooms, and community and youth-serving organizations.
DATE: -
TEAM MEMBERS: Paula Apsell Tom Friedman Jon Palfreman