Skip to main content

Community Repository Search Results

resource research Public Programs
The Prototyping Puppets project presents a craft-based prototyping project for STEM education of early middle school level students in informal learning. The project combines crafting and performing of hybrid puppets. It was pilot tested in two expert workshops (n=6 and n=10), which focused on crafting practices and materials and two student workshops (n=8 and n=9), which included performance elements. The resulting data back the main design concept to combine craft and performance in a STEM-focused maker project. They suggest particular focus on key elements of our educational scaffolding
DATE:
TEAM MEMBERS: Michael Nitsche Crystal Eng
resource project Public Programs
This project will incorporate lessons learned from our previously funded SEPA, based in five Title I elementary schools in the District of Columbia and Prince George’s County Maryland. In this proposal, “SCIENCE” will engage a new audience of learners in their out of school time in the setting of community libraries. We will provide programming that uses hands- on, inquiry-based learning based on our established art and science curriculum designed to improve the physical, cognitive and social development of children and their families.

SCIENCE will include instructional units, web based activities and ‘hands on/brains on’ manipulation utilizing our compact, portable and unique “art and science in a box”, which consolidates all materials needed to bring excitement to STEM learning. We will focus on preventative health areas of concern to our community, including asthma, stress, cardio-metabolic risk, sleep and behavioral issues, including bullying, genetic diseases like sickle cell disease and, injury prevention at home, in school and with sports.

We will also provide professional development training for informal educators. Specifically, we will adapt our previously successful in-school curriculum for a broader group of children from grades K–5 who utilize the District of Columbia Public Libraries (DCPL) and Enoch Pratt Free Library (EPFL). The curriculum is aligned to both Common Core State Standards and Next Generation Science Standards, and will be expanded with the addition of bioengineering/imaging/computing, and mindfulness.

With our integrated-art focused STEM and preventative health educational program, we will empower children by encouraging curiosity and discovery as well as providing tools to incorporate health and science messaging to improve school readiness. Over the course of the five years, we will implement the program progressively in 10 DCPL branches and 2 Baltimore branches. Programming will take place during winter and spring breaks, professional development days, special holidays and weekends.

We will continue our successful one week hospital summer program, Dr. Bear’s Summer Science Experience, an interactive STEAM experience which takes place in the hospital and its research laboratories. In addition to student focused programming, we will also create Family Learning Events—entertaining and collaborative programs for families—to be held in DCPL and EPFL branches with a focus on disease prevention which adversely affects our community. Take home materials will include handouts, web resources, apps and links in in both English and Spanish, and will focus on reading readiness and mastery of STEM concepts.
DATE: -
TEAM MEMBERS: Naomi Luban
resource project Professional Development, Conferences, and Networks
STEAM, the use of art as a context and tool for science education, is currently a hot topic in the science education field. In almost all instances of study and practice, it involves the use of science-themed or science-informed art in science education. As such, it does not take advantage of the majority of artistic output that does not have an obvious connection to science. The National Academies of Sciences, Engineering and Medicine recently called for more research to expand the "limited but promising" evidence that integrating arts and humanities with science education leads to better learning. The goal of this 2.5-day conference is to bring together representatives of both art and science groups to have a shared discussion around how non-scientific art can influence science education in theory, and how we can apply empirical results to the theory. For purposes of this conference, "non-science art" is defined as art that was not inspired by science. Conference attendees will include researchers (art and science education researchers) and practitioners (artists, art museum interpreters, and science educators). The conference will take place during the 2020 Black Creativity exhibition at the Museum of Science and Industry, Chicago. It is anticipated that by holding the conference at that time the audience for the conference and its impact will be informed by more diverse attendance.

The conference will be implemented starting with a pre-conference reading. Attendees will be sent a copy of the white paper from the Art as a Way of Knowing report for background reading and also asked to contribute to a Google Document that describes their various contexts. Each day of the conference will focus on a theme -- state of the field and possibilities and research -- and be comprised of large and small group interactions. Attendees will be invited from the ranks of practitioners, researchers and educators in the art and science education fields; several slots will be available for open (non-invited) participants. Key outcomes include: (a) a summary of all the research that has been conducted on using non-science art in science education, (b) starting points for building a theory on why non-science art can be used in science education; and (c) a list of specific research topics that would help inform, advance, and test the theory. In addition to assessing satisfaction with the conference, evaluation will also include a one-year post conference survey to investigate impact of participation in the conference.

This conference will generate products that will give guidance to both researchers and practitioners who want to use art in science education. These products include a white paper synthesizing the discussion and appendices that include raw transcripts and a bibliography of resources. Another product is a roadmap to create interventions that can be studied, which should lead to a stronger, more rigorous theory of practice about how art can be integrated into science education.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Aaron Price Jana Greenslit Manuel Juarez
resource project Media and Technology
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.

The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Harry Mairson
resource project Public Programs
Libraries can provide unique opportunities for rural youth and communities. Phase III of the STAR Library Network will be a collaboration with 12 rural school districts in largely Latinx communities to address the challenges faced by rural youth, particularly English Language Learners. The project will use a coordinated and tested strategy to establish three learning pathways in public libraries: science learning spaces with exhibits, library programs, and science kits. These resources will provide learners with art-rich STEM learning opportunities.

Partners

Project partners include the Space Science Institute, the American Library Association (ALA), the Institute for Learning Innovation, and Twin Cities Public Television. The project will rely significantly on expertise from the Latinx community.

Project Plan

Building on an established librarian training model, the project will introduce library staff to the STEAM content and guide them in developing their own STEAM Learning Pathways. The project will draw on existing professional infrastructure from the ALA and the Institute for Learning Innovation’s established community of practice. SciGirls digital media, hands-on activities, family resources, and a training network will expand the depth and reach of the project.

The Research

The research team will study the efficacy of each pathway, alone and in tandem, on participant’s interest development and persistence. The research will use a mixed-methods design-based approach that involves questionnaires, interviews, and case studies. The results should yield a model for nationwide application and contribute insights for the formal education sector.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Lainie Castle
resource research Public Programs
This Conference Paper was presented at the International Soceity for the Learning Sciences Confernece in June 2018. We summarize interviews with youth ages 9-15 about their failure mindsets, and if those midsets cross boundaries between learning environments. Previous research on youth’s perceptions and reactions to failure established a view of failure as a negative, debilitating experience for youth, yet STEM and in particular making programs increasingly promote a pedagogy of failures as productive learning experiences. Looking to unpack perceptions of failure across contexts and
DATE:
resource research Public Programs
Making is a recent educational phenomenon that is increasingly occurring in schools and informal learning spaces around the world. In this paper we explore data from maker educators about their experiences with failure. We surveyed maker educators about how they view failure happening with youth in their formal and informal programs and how they respond. The results reveal some concrete strategies that seem to show promise for helping educators increase the likelihood that failure experiences for youth can lead to gains in learning and persistence. This article summarizes a survey of formal
DATE:
resource research Professional Development, Conferences, and Networks
Many informal learning institutions are experimenting with STEAM approaches to engage diverse learners. However, what STEAM means, including how to design and enact STEAM experiences, is undertheorized. We are offering a PD series for informal educators that centers around a set of core STEAM practices that support identity work among learners. The series involves in-person sessions, online training, and team coaching during the design phase. This poster was presented at the 2019 NSF AISL Principal Investigators Meeting.
DATE:
TEAM MEMBERS: Laura Conner Blakely Tsurusaki Carrie Tzou Mareca Guthrie Stephen Pompea Perrin Teal-Sullivan
resource research Informal/Formal Connections
In the United States, broad study in an array of different disciplines —arts, humanities, science, mathematics, engineering— as well as an in-depth study within a special area of interest, have been defining characteristics of a higher education. But over time, in-depth study in a major discipline has come to dominate the curricula at many institutions. This evolution of the curriculum has been driven, in part, by increasing specialization in the academic disciplines. There is little doubt that disciplinary specialization has helped produce many of the achievement of the past century
DATE:
TEAM MEMBERS: David Skorton Ashley Bear National Academies of Sciences, Engineering, and Medicine
resource research Public Programs
Informal science learning (ISL) organizations that are successful at providing meaningful science, technology, engineering, arts, and mathematics (STEAM) experiences for Latino children, youth, and their families share some common traits. They have leaders and staff who believe in the importance of developing culturally relevant models and frameworks that meet the needs and acknowledge the legacy of STEAM in Latino communities. Such organizations are willing to take risks to create experiences that are culturally meaningful, garner funding and implement programs by working closely with their
DATE:
TEAM MEMBERS: Cheryl Juarez Verónika Núñez Exploratorium
resource project Websites, Mobile Apps, and Online Media
The intent of this five-year project is to design, deliver, and study professional development for Informal Science Learning (ISL) educators in the arena of equity-focused STEAM (Science, Technology, Engineering, Art, and Mathematics) teaching and learning. While the strategy of integrating art and science to promote interest, identity, and other STEM-related learning has grown in recent years, this domain is still nascent with respect to a guiding set of best practices. Through prior work, the team has developed and implemented a set of design principles that incorporate effective practices for broadening participation of girls in science via science-art integration on the topic of the biology, chemistry and optics of "Colors in Nature." The continued initiative would impact the ISL field by providing a mechanism for ISL educators in museums, libraries and after-school programs to adopt and implement these STEAM design principles into their work. The team will lead long-term (12-18 months) professional development activities for ISL educators, including: 1) in-person workshops that leverage their four previously developed kits; 2) online, asynchronous learning activities featuring interactive instructional videos around their STEAM design principles; 3) synchronous sessions to debrief content and foster communities of practice; and 4) guided design work around the development or redesign of STEAM activities. In the first four years of the project, the team will work with four core institutional partners (Sitka Sound Science Center, Sno-Isle Libraries, the Fairbanks North Star Borough School District after-school program, and the Pima County Public Library system) across three states (Alaska, Washington, and Arizona). In the project's later stages, they will disseminate their learning tools to a broad, national audience. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The project has three main goals: (1) To support ISL educators in offering meaningful STEAM activities, (2) To create institutional change among the partner organizations, and (3) To advance the ISL field with respect to professional development and designing for STEAM Programming. The research questions associated with the professional development activities address the ways in which change occurs and focus on all three levels: individual, institutional, and the ISL field. The methods are qualitative and quantitative, including videotaped observations, pre and post interviews, surveys and analysis of online and offline artifacts. In addition, the project evaluation will assess the implementation of the project's professional development model for effectiveness. Methods will include observations, interviews, surveys and Website analytics and program data.
DATE: -
TEAM MEMBERS: Laura Conner Carrie Tzou Mareca Guthrie Stephen Pompea Blakely Tsurusaki Laura Oxtoby Perrin Teal-Sullivan
resource project Public Programs
A collaboration of TERC, MIT, The Woods Hole Oceanographic Institution and community-based dance centers in Boston, this exploratory project seeks to address two main issues in informal science learning: 1) broadening participation in science by exploring how to expand science access to African-American and Latino youth and 2) augmenting science learning in informal contexts, specifically learning physics in community-based dance sites. Building on the growing field of "embodied learning," the project is an outgrowth in part of activities over the past decade at TERC and MIT that have investigated approaches to linking science, human movement and dance. Research in embodied learning investigates how the whole body, not just the brain, contributes to learning. Such research is exploring the potential impacts on learning in school settings and, in this case, in out of school environments. This project is comprised of two parts, the first being an exploration of how African-American and Latino high school students experience learning in the context of robust informal arts-based learning environments such as community dance studios. In the second phase, the collaborative team will then identify and pilot an intervention that includes principles for embodied learning of science, specifically in physics. This phase will begin with MIT undergraduate and graduate students developing the course before transitioning to the community dance studios. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The goal of this pilot feasibility study is to build resources for science learning environments in which African-American and Latino students can develop identities as people who practice and are engaged in scientific inquiry. Youth will work with choreographers, physicists and educators to embody carefully selected physics topics. The guiding hypothesis is that authentic inquiries into scientific topics and methods through embodied learning approaches can provide rich opportunities for African-American and Latino high school-aged youth to learn key ideas in physics and to strengthen confidence in their ability to become scientists. A design- based research approach will be used, with data being derived from surveys, interviews, observational field notes, video documentation, a case study, and physical artifacts produced by participants. The study will provide the groundwork for producing a set of potential design principles for future projects relating to informal learning contexts, art and science education with African American and Latino youth.
DATE: -
TEAM MEMBERS: Folashade Cromwell Solomon Tracey Wright Lawrence Pratt